Graphene 2018 // Peter Rickhaus

So many possibilities!

As2Te3

Bi2S3

Black Phosphorus

GaS

GeSe

Hexagonal Boron Nitride

GaSe

HfS2

AuSe (Alpha phase)

MoTe2 (1T phase)

PtSe2

Graphite HOPG

NbSe2 (2H phase)

http://hqgraphene.com/

TiS2 (1T phase)

WTe2

Graphite Natural

NbS2 (2H phase)

Graphene on graphene - a trivial combination?

Transport through a network of topological states in twisted bilayer graphene

Peter Rickhaus, Graphene 2018, Dresden

Acknowledgements

Experiments

Prof. Klaus Ensslin Prof. Thomas Ihn Hiske Overwegh Marius Eich Riccardo Pisoni Yongjin Lee

Theory

Sergey Slizovski John Wallbank

Ming-Hao Liu

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Fabrication

Quantum Valley-Hall effect in Graphene

Single-layer Graphene Bilayer Graphene

- + Interlayer bias +V/-V
- + Stacking fault

→ Quantum Valley-Hall effect

Small angle twisted bilayer graphene

... has "a bulk full of boundaries"

In our device: λ =33nm, θ =0.4°

Small angle twisted bilayer graphene

... has "a bulk full of boundaries"

Theory: *P. San-Jose and E. Prada, Phys. Rev. B* **88**, (2013). STM: *S. Huang, ... B. J. Leroy, arXiv:1802.02999v1* (2018).

How to measure the topological network in a transport experiment?

2-terminal measurement with global top- and bottomgate?

Measure the gap in bilayer graphene

| 10

Measure the gap in twisted bilayer graphene

How to measure the topological network in a transport experiment?

2-terminal measurement with global top- and bottomgate?
→ not enough information

Hallbar?

 \rightarrow probes the boundaries

Conductance of a single boundary? \rightarrow We are interested in the network

Using an electronic Fabry-Pérot interferometer!

Single layer graphene

P. Rickhaus, R. Maurand, M.H. Liu et al. Nature Comm. 4, 2342 (2013) P. Rickhaus, M.-H. Liu, P. Makk, et.al. Nano Lett. 15, 5819 (2015)

Using an electronic Fabry-Pérot interferometer!

Bilayer graphene

A. Varlet, M.-H. Liu, .. K. Ensslin, and T. Ihn, Phys. Rev. Lett. 113, 116601 (2014). Peter Rickhaus | 23.07.18 | 14

Using an electronic Fabry-Pérot interferometer!

Graphene + hBN moiré superlattice

C. Handschin, P. Makk, ... P.Rickhaus, ... Nano Lett., 17, 328 (2017)

Using an electronic Fabry-Pérot interferometer!

Bending of Fab $k \sim \sqrt{n}$ $k \sim n$ P. Rickhaus... C. Schönenberger, Nat. Commun. **6**, 6470 (2015).

Device with three topgates

Fabry-Pérot resonances in twisted BLG

EHzürich

Fabry-Pérot resonances in twisted BLG

Magneto-conductance oscillations

Resonances do not disappear! They follow the condition:

$$j = L\frac{k_{\rm F}}{\pi} \pm A\frac{B}{\phi_0}$$

Where A is the area of one row of AB/BA regions:

For different gates (9) lengths On different samples (3)

Summary

- Topological network
- Current flows along ideal geometric boundaries in the bulk
- Probed with a Fabry-Pérot resonator
 - Resonances stable in B>>0
 - Resonances linear in n

Valleytronics:

 FP resonator as source of valleypolarized current

