Synthesis of nitrogen doped graphene derivatives for new renewable nano structured membranes used for direct alkaline ethanol fuel cell

PhD in Material Science

26-29 June 2018 Dresden, Germany

Outline

- Abalonyx AS
- NanoElMem project
- Nitrogen Doping
- Results and Discussion
- Summary

Location

Labs and offices at Sintef, Oslo, Norway

Production site at Tofte, Norway

Participation in EU projects

NanoElMem

Designing new renewable **nano-structured electrode** and **membrane** materials for direct alkaline ethanol **fuel cell**

Designing new renewable nano-structured electrode and membrane materials for direct alkaline ethanol fuel cell

M-era.Net Funded in 2017

NanoElMem Partners

Coordinator (P1): University of Maribor (UM)	Partner 2: University of Nova Gorica (UNG)	Partner 3: Abalonyx	Partner 4: Norwegian University of Science & Technology (NTNU)	Partner 5: Chang Gung University (CGU)
Slovenia	Slovenia	Norway	Norway	Taiwan

• Emphasis on :

- Platinum (Pt)-free anode catalysts
- Nano-composite membranes

Abalonyx + University of Maribor

Nitrogen Doping

The introduction of N into graphene can modify the local electronic structure.

4 times higher 0.6 at% of N doping electrical conductivity C atom **N3** pyridinic" N atom N1 "graphitic" N atom (bulk) 'pyrrolic" N atom **N2** 'graphitic" N atom (edge) Both graphitic (N3) and pyridinic (N1) have been

N bonding Configurations

suggested to facilitate ORR*

*oxygen reduction reaction

Wei et. Al. Nano Lett. 2009, 9, 1752–1758

Results and Discussion (Synthesis)

N doped GO

1- Ultrasonic treatment

A simple, rapid and scalable wet-chemical method Parameters: Time and Temperature.

• 2- Plasma treatment

Exposure to NH₃ gas at room temp Parameters: Exposure time and Plasma strength

www.haydale.com

X-ray diffractometry (XRD)

- GO peak at around 11°
- NGO peak with a slight downshift
- Expansion of an interlayer distance as a result of insertion of N atoms

Fourier transform infrared (FTIR)

- **GO:** The peaks at around 1722, 1618, and 1055 cm⁻¹ correspond to the stretching vibrations of C=O, C=C, and C–O groups.
- NGO: The intensity of the C=O peak significantly reduced and meanwhile, two new bands at about 1400 and 1250 cm⁻¹ appeared that originated from C=N and C–N stretching vibrations, respectively.

X-ray photoelectron spectroscopy (XPS) O 1s O 1s C1s C1s Intensity (a. u) N 1s Intensity (a. u) Plasma N GO Ultrasonic N GO N 1s GO GO 1000 800 600 400 200 1000 800 600 400 200 Binding energy (eV) Binding energy (eV)

The wide-survey spectra shows presence of N in addition to C and O after doping in NGO samples.

XPS Calculations

Sample	C (at.%)	O (at.%)	N (a.%)	
GO	66.79	30.89	0.3	
Ultrasonic NGO	72.94	23.62	3.44	
Plasma NGO	74.68	19.91	5.41	

Around **50% of N** belongs to **pyridinic** (N1) and **graphitic** (N3) that facilitate oxygen reduction reaction (ORR).

N configuration	% in total N	Amount in at.%
N1 (pyridinic)	28.16	1.03
N2 (pyrrolic)	51.46	1.9
N3 (graphitic)	20.38	0.75

Results and Discussion (Synthesis)

N doped rGO

• 1- Thermal annealing

The annealing temperature and the nature of the N sources (precursors).

Melamine (MA) used as N precursor with different ratios Heat treated at 450°C and at 900°C

2- Plasma treatment

Exposure to NH₃ gas at room temp

Parameters: Exposure time and Plasma strength

Plasma Reactor

www.haydale.com

X-ray diffractometry (XRD)

The degree of crystallinity (peak intensity) of NrGO increases with increasing the temperature The peak was shifted to a higher 2θ degree, implying a better reducibility.

Both rGO and NrGO show a broad peak placed at around $2\theta = 24^{\circ}$.

The peak of NrGO show a broader width and weaker intensity.

Fourier transform infrared (FTIR)

The peaks corresponding to the oxygen functionalities, such as the C–O and C=O, decreased dramatically. Two new bands at about **1400 and 1250 cm**⁻¹ appeared that originated from **C=N and C–N**

X-ray photoelectron spectroscopy (XPS)

The wide-survey spectra shows presence of N in addition to C and O after doping in NrGO samples.

XPS Calculations

Chemical Composition	C (at.%)	O(at.%)	N(at.%)	
rGO	86.47	13.09	-	
Plasma NrGO	82.94	13.58	3.47	
MA GO 1:1 450°C	80.11	4.39	15.50	
MA GO 3:1 450°C	67.69	2.95	29.34	
MA GO 1:1 900°C	93.55	1.33	5.12	
MA GO 3:1 900°C	92.63	1.77	5.60	

Chemical Composition	N1 %	N2 %	N3 %	N4 %	N(at.%)
NrGO Plasma	15.05	53.07	31.88	-	3.47
MA GO 1:1 450°C	39.7	33.6	21.7	4.95	15.50
MA GO 3:1 450°C	50.76	24.55	19.03	5.67	29.34
MA GO 1:1 900°C	31.88	40.17	14.48	13.47	5.12
MA GO 3:1 900°C	33.36	32.27	14.9	19.47	5.60

Composite membrane with NGO

CS-90 0.01 % MA-GO (3:1, 900 °C)

OH – conductivity

Summary

- Abalonyx is producing GO and rGO in large scales.
- The energy section might be taught as a potential candidate for graphene commercialization.
- NanoElmem seeks for solutions to enhance performance of fuel cells by N doping of GO.

Do you have any questions?

THANK YOU FOR YOUR ATTENTION !

Azadeh Motealleh am@abalonyx.no Forskningsveien 1 0373 Oslo, Norway

ACKNOWLEDGEMENTS

M-era.Net 2017 COST-STSM-CA15107-38738

Designing new renewable nano-structured electrode and membran materials for direct alkaline ethanol fuel cell

Multi**Comp**