8th edition of the largest European Conference & Exhibition in Graphene and 2D Materials # Insights by Combined Electrical and Optical Characterization of Large Area Graphene **GRAPHENE 2018** Marcus Klein, SURAGUS GmbH #### **SUR**face **A**r**GUS** = Surface guard #### **Technology** HF Eddy current-based testing solutions for innovative materials #### **Location and Presence** R&D and production in Germany, Dresden, near Airport and A14 EddyCus systems are present on six continents #### **Ownership** German privately owned company #### **Applications** Quality assurance of functional thin-films #### **Values** Accurate and reliable solutions Smart solutions (inline reverse calibration, automated self-reference, temperature stabilized) High technical flexibility (various gap sizes, different sensor setups, traverse and fixed) Excellent service (Close contact / short response times) # Challenges the industry is facing from an commercial/industrial application point of view The key challenge is finding an application where Graphene can achieve a superior and competitive set of characteristics ## **Physical Characteristics** - Electrical properties - Mechanical properties - Chemical properties - Optical properties - Medical / biological etc. #### Soft characteristics - Ability for flexible substrates - Stable over time #### **Financial Characteristics** Cost per performance ## Challenges the industry is facing from an commercial/industrial application point of view ## Example: Graphene as transparent electrode - Requirements/ trends - Low cost - Low sheet resistance - High transparency - **Beneficial**/ further characteristics - Ability for flexible substrates - Low aging effects ## **Drivers & Challenges in Manufacturing** High conductivity Low conductivity ## **Cost improvement** Larger substrate sizes / gapless production/R2R Low cost High cost - Higher throughput due to higher deposition/growth rate - Cheaper processes: atmospheric pressure, low temperature - More automation / continuous processes? - Optimized material input eg. reuse of growth substrates ## Graphene as transparent electrode ## **Main Parameter** - Physical integrity - Doping - **Annealing** - Stacking, patching - **Defect-freeness** S. Bae et al. Nature Nano. 5, 571 (2010); ## Effects of Defects to the Sheet Resistance The defect density significantly affects the sheet resistance ## Typical Defects in Graphene graphene monolayer on glass in SEM graphene monolayer on glass in SEM organic residues graphene monolayer on glass in SEM particle Source: D. Waynolds et al., Fraunhofer FEP ## Quality Characteristics of Graphene as TCM | Thickness/# of layers | Defect freeness | Sheet Resistance | Optical transparency | Robustness | |-----------------------|---|--|--|--| | ■ Homogeneity | Cracks/ gaps, tearing Holes Folds/wrinkles Impurities (before and after doping) Point defects, vacancies, rotated bonds Dopant atoms Contaminant particles from catalysts and CVD process Missing Interlayer conductivity Not connected flakes Too low overlap after patching Multilayer regions | Quantification in a range of 10 Ohm/sq to 3000 Ohm/sq Homogeneity How to define it | Optical transparency from UV up to IR wave lengths Quantification Range: Transmittance from 80 - 97.7% or absorbance Homogeneity How to define it Other optical parameters such as haze | Stability/Aging Ability of flexible substrates Heat resistance | - How to define homogeneity and defect density? - By result / resistance for TCM? ## Metrology for Graphene ## Commonly applied testing technology - Raman - TEM and SEM - High magnification optical microscopes - Optical spectrometer (reflection and transmission) - 4PP - Eddy Current - Van der Pauw - Terahertzspectroscopy - Mechanical testing ## Quality determination of Graphene as transparent electrode - Sheet resistance - 44P - Van der Pauw - Eddy Current - Optical transparency - Optical transmission measurement Non-contact ## 4-point-probe testing - Contact quality artifacts - Possible damage to sensitive layers - No measurement of encapsulated films - Wearing of probe with time | | 4PP-measurement | | | Eddy Current | | | | | |------------------|------------------|-----------------------------------|-----------------|-----------------|------------------|-----------------------------------|-----------------|---------------------| | Sample
Number | Mean
[ohm/sq] | Standard
deviation
[ohm/sq] | Min
[ohm/sq] | Max
[ohm/sq] | Mean
[ohm/sq] | Standard
deviation
[ohm/sq] | Min
[ohm/sq] | Max
[ohm/sq
] | | 1 | 0.496 | 0.052 | 0.467 | 0.64 | 0.485 | 0.0002 | 0.4842 | 0.4847 | | 2 | 1.120 | 0.022 | 1.079 | 1.16 | 1.120 | 0.0001 | 1.1203 | 1.1206 | | 3 | 1.759 | 0.032 | 1.720 | 1.81 | 1.772 | 0.0002 | 1.7715 | 1.7721 | | 4 | 4.430 | 0.100 | 4.300 | 4.61 | 4.425 | 0.0006 | 4.4244 | 4.4263 | | 5 | 11.840 | 0.200 | 11.350 | 12.09 | 11.622 | 0.0102 | 11.6055 | 11.6421 | | 6 | 30.400 | 0.500 | 29.800 | 31.30 | 30.498 | 0.0241 | 30.4544 | 30.5360 | | 7 | 82.500 | 0.700 | °1.500 | 83.40 | 81.359 | 0.1145 | 81.2294 | 81.4972 | ## Non-contact eddy current testing - No influence of contact quality - No harm or artifacts to sensitive films - Measurement of encapsulated films - Very fast measurement ## Sheet resistance measurement by Eddy Current Primary Field Induction Coil Pickup Coil Secondary Field Eddy Currents Sample - + Non-contact - High sample rate - + High sensitivity - Limited to conductive materials ## General testing types #### **Single Point Testing** EddyCus® TF lab Series #### Sheet resistance & OT - After transfer - Doping - Annealing - Ageing #### **Inline Testing** EddyCus® TF inline Series #### Sheet resistance & OT Concept for inline graphene manufacturing and inline testing is currently created #### **Imaging solutions** **EddyCus® TF map Series** ## Sheet resistance & OT imaging #### Defect detection - Impurities, - deposition effects - Many more ## Information Obtained by Combined Testing ## Information obtained by optical testing - Reflection - Transmission - Diffuse Transmittance / Haze ### Information obtained by electrical testing Sheet resistance ## **Combined Testing Measurement Head** ## Capabilities - Measurement at same position - Measurement at the same time - Integration of optical and electrical sensors ## **Benefits of Combined Testing** ## What is the beauty in combined testing? - Lower investment costs - One sample holder - One sensor holder - One PC and set of drives - Lower space requirements (one tool instead of 4) - Measurements are obtained at the same position - Measurements are obtained at the very same time - Lower risk of contaminations and handing defects - Time efficient - One time sample handing - Data merging ## Data integrity @ time & cost savings! ## Sheet resistance imaging [ohm/sq] on 200 x 200 mm ## Sheet resistance imaging [ohm/sq] on 200 x 200 mm ## Sheet resistance imaging [ohm/sq] on 200 x 200 mm - Doping effectivity - Doping homogeneity - Doping stability ## **Doping Efficiency Imaging** ## Inhomogenious doping ## Doping stability imaging Doping – measurement after aging ## **Graphite imaging** ## Anisotropy imaging of Graphene? - Example on Ag-NW 200 x 200 mm [8 inch], Measurement pitch 1 mm x 1mm Anisotropy strength(blue=low anisotropy, red=high) Direction of the least present sheet resistance ## Demonstration - future Graphene inline testing ## Take home messages - Graphene opportunities especially if many of its characteristics are required - TCM was introduced as one example - There are various characteristics of G. most of them affect electrical performance - Combined electrical and optical testing provides additional insights - HF eddy current testing provides various benefits for Graphene characterization - Non- contact, non-destructive, Imaging, defect density assessment - Imaging provides insights to many quality aspects - Control of defect density is a key factor for successful application - Quality assurance and process control needs to be considered along the process chain → Deposition, after transfer, doping, annealing, aging, cleaning, application integration # For questions and requests please feel free to contact us... - SURAGUS is keen to contribute and participate in graphene application developments - Please feel free to share your ideas!! #### **SURAGUS GmbH** Maria-Reiche-Straße 1 D-01109 Dresden E-Mail: <u>info@suragus.com</u> Web: <u>www.suragus.com</u> Phone: +49 351 - 32 111 520 Fax: +49 351 - 32 111 509