

8th edition of the largest European Conference & Exhibition in Graphene and 2D Materials

Insights by Combined Electrical and Optical Characterization of Large Area Graphene

GRAPHENE 2018

Marcus Klein, SURAGUS GmbH

SURface **A**r**GUS** = Surface guard

Technology

HF Eddy current-based testing solutions for innovative materials

Location and Presence

R&D and production in Germany, Dresden, near Airport and A14 EddyCus systems are present on six continents

Ownership

German privately owned company

Applications

Quality assurance of functional thin-films

Values

Accurate and reliable solutions

Smart solutions (inline reverse calibration, automated self-reference, temperature stabilized)

High technical flexibility (various gap sizes, different sensor setups, traverse and fixed)

Excellent service (Close contact / short response times)

Challenges the industry is facing from an commercial/industrial application point of view

The key challenge is finding an application where Graphene can achieve a superior and competitive set of characteristics

Physical Characteristics

- Electrical properties
- Mechanical properties
- Chemical properties
- Optical properties
- Medical / biological etc.

Soft characteristics

- Ability for flexible substrates
- Stable over time

Financial Characteristics

Cost per performance

Challenges the industry is facing from an commercial/industrial application point of view

Example: Graphene as transparent electrode

- Requirements/ trends
- Low cost
- Low sheet resistance
- High transparency
- **Beneficial**/ further characteristics
- Ability for flexible substrates
- Low aging effects

Drivers & Challenges in Manufacturing

High conductivity

Low

conductivity

Cost improvement

Larger substrate sizes / gapless production/R2R Low cost

High cost

- Higher throughput due to higher deposition/growth rate
- Cheaper processes: atmospheric pressure, low temperature
- More automation / continuous processes?
- Optimized material input eg. reuse of growth substrates

Graphene as transparent electrode

Main Parameter

- Physical integrity
- Doping
- **Annealing**
- Stacking, patching
- **Defect-freeness**

S. Bae et al. Nature Nano. 5, 571 (2010);

Effects of Defects to the Sheet Resistance

The defect density significantly affects the sheet resistance

Typical Defects in Graphene

graphene monolayer on glass in SEM

graphene monolayer on glass in SEM organic residues

graphene monolayer on glass in SEM particle

Source: D. Waynolds et al., Fraunhofer FEP

Quality Characteristics of Graphene as TCM

Thickness/# of layers	Defect freeness	Sheet Resistance	Optical transparency	Robustness
■ Homogeneity	 Cracks/ gaps, tearing Holes Folds/wrinkles Impurities (before and after doping) Point defects, vacancies, rotated bonds Dopant atoms Contaminant particles from catalysts and CVD process Missing Interlayer conductivity Not connected flakes Too low overlap after patching Multilayer regions 	 Quantification in a range of 10 Ohm/sq to 3000 Ohm/sq Homogeneity How to define it 	 Optical transparency from UV up to IR wave lengths Quantification Range: Transmittance from 80 - 97.7% or absorbance Homogeneity How to define it Other optical parameters such as haze 	 Stability/Aging Ability of flexible substrates Heat resistance

- How to define homogeneity and defect density?
- By result / resistance for TCM?

Metrology for Graphene

Commonly applied testing technology

- Raman
- TEM and SEM
- High magnification optical microscopes
- Optical spectrometer (reflection and transmission)
- 4PP
- Eddy Current
- Van der Pauw
- Terahertzspectroscopy
- Mechanical testing

Quality determination of Graphene as transparent electrode

- Sheet resistance
 - 44P
 - Van der Pauw
 - Eddy Current
- Optical transparency
 - Optical transmission measurement

Non-contact

4-point-probe testing

- Contact quality artifacts
- Possible damage to sensitive layers
- No measurement of encapsulated films
- Wearing of probe with time

	4PP-measurement			Eddy Current				
Sample Number	Mean [ohm/sq]	Standard deviation [ohm/sq]	Min [ohm/sq]	Max [ohm/sq]	Mean [ohm/sq]	Standard deviation [ohm/sq]	Min [ohm/sq]	Max [ohm/sq]
1	0.496	0.052	0.467	0.64	0.485	0.0002	0.4842	0.4847
2	1.120	0.022	1.079	1.16	1.120	0.0001	1.1203	1.1206
3	1.759	0.032	1.720	1.81	1.772	0.0002	1.7715	1.7721
4	4.430	0.100	4.300	4.61	4.425	0.0006	4.4244	4.4263
5	11.840	0.200	11.350	12.09	11.622	0.0102	11.6055	11.6421
6	30.400	0.500	29.800	31.30	30.498	0.0241	30.4544	30.5360
7	82.500	0.700	°1.500	83.40	81.359	0.1145	81.2294	81.4972

Non-contact eddy current testing

- No influence of contact quality
- No harm or artifacts to sensitive films
- Measurement of encapsulated films
- Very fast measurement

Sheet resistance measurement by Eddy Current

Primary Field Induction Coil Pickup Coil Secondary Field Eddy Currents Sample

- + Non-contact
- High sample rate
- + High sensitivity
- Limited to conductive materials

General testing types

Single Point Testing

EddyCus® TF lab Series

Sheet resistance & OT

- After transfer
- Doping
- Annealing
- Ageing

Inline Testing

EddyCus® TF inline Series

Sheet resistance & OT

Concept for inline graphene manufacturing and inline testing is currently created

Imaging solutions

EddyCus® TF map Series

Sheet resistance & OT imaging

Defect detection

- Impurities,
- deposition effects
- Many more

Information Obtained by Combined Testing

Information obtained by optical testing

- Reflection
- Transmission
- Diffuse Transmittance / Haze

Information obtained by electrical testing

Sheet resistance

Combined Testing Measurement Head

Capabilities

- Measurement at same position
- Measurement at the same time
- Integration of optical and electrical sensors

Benefits of Combined Testing

What is the beauty in combined testing?

- Lower investment costs
 - One sample holder
 - One sensor holder
 - One PC and set of drives
- Lower space requirements (one tool instead of 4)
- Measurements are obtained at the same position
- Measurements are obtained at the very same time
- Lower risk of contaminations and handing defects
- Time efficient
 - One time sample handing
 - Data merging

Data integrity @ time & cost savings!

Sheet resistance imaging [ohm/sq] on 200 x 200 mm

Sheet resistance imaging [ohm/sq] on 200 x 200 mm

Sheet resistance imaging [ohm/sq] on 200 x 200 mm

- Doping effectivity
- Doping homogeneity
- Doping stability

Doping Efficiency Imaging

Inhomogenious doping

Doping stability imaging

Doping – measurement after aging

Graphite imaging

Anisotropy imaging of Graphene? - Example on Ag-NW

200 x 200 mm [8 inch], Measurement pitch 1 mm x 1mm

Anisotropy strength(blue=low anisotropy, red=high)

Direction of the least present sheet resistance

Demonstration - future Graphene inline testing

Take home messages

- Graphene opportunities especially if many of its characteristics are required
- TCM was introduced as one example
- There are various characteristics of G. most of them affect electrical performance
- Combined electrical and optical testing provides additional insights
- HF eddy current testing provides various benefits for Graphene characterization
 - Non- contact, non-destructive, Imaging, defect density assessment
- Imaging provides insights to many quality aspects
- Control of defect density is a key factor for successful application
- Quality assurance and process control needs to be considered along the process
 chain → Deposition, after transfer, doping, annealing, aging, cleaning, application integration

For questions and requests please feel free to contact us...

- SURAGUS is keen to contribute and participate in graphene application developments
- Please feel free to share your ideas!!

SURAGUS GmbH

Maria-Reiche-Straße 1 D-01109 Dresden

E-Mail: <u>info@suragus.com</u>
Web: <u>www.suragus.com</u>

Phone: +49 351 - 32 111 520 Fax: +49 351 - 32 111 509

