

Assembling van der Waals Materials

 \triangleright

Pick-up Technique and Edge Contacts for Multilayer vdW Stacking

Fractional and Fractal Quantum Hall Effect

- 50

ຮູ້ Rxy (kΩ)

40

- 60

20

- 10

20

Can we observe Fractional Fractal Quantum Hall Effect?

Filling (v)

 $\sigma_{\rm xx} (e^2/h)$

Encapsulation of vdW semiconductors in between hBN

Xu et.al., Nature Nano (2015) (Hone group collaboration)

TMDC Quantum Electronic Devices

Quantum Point Contact

Double quantum dot and QPC charge sensor in hBN-WSe₂-hBN heterostructures.

vdW Heterostructure Devices

Coulomb Drag in Graphene

vdW Bipolar Transistor

WSe

Excitons

Excitons in Semiconductors

i 1 1

 $\omega - E_s$

Direct and indirect excitons in semiconducting quantum wells

A. High, Nature 2012

Excitons in 2D Materials

LETTERS

- Strong confinement
- Lack of strong screening effect

- Spin polarized band

Spin-valley locking

- VALLEYTRONICS RESEARCH | REPORTS 688 12 FEBRUARY 2016 • VOL 351 ISSUE 6274

a 2D semiconductor heterostructure Valley-polarized exciton dynamics in

Pasqual Rivera,¹⁺ Kyle L. Seyler,¹⁺ Hongyi Yu,² John R. Schaibley,¹ Jiaqiang Yan,^{3,4} David G. Mandrus,^{3,4,5} Wang Yao,² Xiaodong Xu^{1,6}†

Gate Tunable Optical Properties of WSe₂

Top and bottom gate to control electric fields and density at T = 4K

Earlier work:

Jones et al (Xue), Nat. Nano (2013)

- Monolayer WSe₂ is grounded
- $V_{BG} = V_{TG}$ zero E-field \rightarrow change of carrier density only
- Thick. of bottom and top h-BN: 32nm and 31.4nm, respectively

L. Jauregui et. al, unpublished (Collaboration with H. Park and M. Lukin groups)

Funable Interlayer Excitons in TMDCs

Ke Wang et al, Nature Nano (2018) (Kim, Park and Lukin collaboration)

 R_{xx} and $R_{xx,D}$ (k\Omega)

Double Bilayer Graphene Drag Device

- Mobility ~ 10⁶ cm²/Vsec
- hBN thickness d = 3 nm
- top and bottom gate
- contact gate
- interlayer bias

Bilayer Graphene/hBN/Bilayer Graphene: Quantized Hall Drag

 R_{xy}^{\star} and $\mathsf{R}_{xy,\mathsf{D}}$ (k Ω) GaAs Double Quantum Well: Kellogg et al. PRL (2002) interlayer bias contact gate top and bottom gate hBN thickness d = 3 nm Mobility ~ 10^6 cm²/Vsec З 50 20 40 10 0.0 0.5 Magnetic Field (Tesla) 1.0 $v_{T} = 1 + 1 = 2$ 1.5 a 12 2.0 $v_T = 1$ 2.5 nce $(k\Omega)$ 0 N σ 00 10 <u>Hall Resistance, Magneto Drag, and Hall Drag</u> ××ч and R_{xx,D} (kΩ) 25.8 6 0 $v_{bot} = v_{top} = 1/2; v_{tot} = I$ 0.5 B=25T T=300mK < || I=2nA InterB=-0.05 $v_{top} = v_{bot}$ 마 ±V_{TG} ⁺ν_{ec} InterB Xiaomeng Liu et al, Nature Physics (2017) v = 4/3- R ^{drag}(kΩ) - R ^{drag}(kΩ) - R ^{top}(kΩ) 1.5 v=2

Exciton/e-h Phase Diagram

Schematic Meta Stable Phase Diagram of electron-hole in 3D

Quantum Hall Bilayer:

and interlayer interaction Competition between inner-layer

- $|\Psi\rangle = \prod (z_i z_j)(w_i w_j)(z_i w_j) \times$

- $e^{-\frac{1}{4}(\sum |z_i|^2 + \sum |w_i|^2)}$

T. Ogawa and K. Asano (2008)

- G. Moller, et al., PRB 79, 125106 (2009) J. Alicea, et al., PRL 103, 256403 (2009). N. E. Bonesteel, et al., PRL 77, 3009 (1996)
- $d \sim l_B$: many proposals
- $|\Psi
 angle = P_{LLL} \prod (z_i z_j)^2 (w_i w_j)^2 \Psi(k_{F,T}, k_{F,B})$
 - : weakly coupled composite fermions
 - $d \gg l_B$

Potential BCS-BEC Crossover in Magnetoexciton Condensate

Twisted van der Waals Layer Stack

Correlated Quantum State in Twisted Graphene Bilayer

80 | NATURE | VOL 556 | 5 APRIL 2018

LETTER

doi:10.1038/nature26154

Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

Yuan Cao¹, Valla Fatemi¹, Ahmet Demir¹, Shiang Fang², Spencer L. Tomarken¹, Jason Y. Luo¹, Javier D. Sanchez-Yamagishi², Kenji Watanabe³, Takashi Taniguchi³, Efthimios Kaxiras^{2,4}, Ray C. Ashoori¹ & Pablo Jarillo-Herrero¹ **a** 0.1

doi:10.1038/nature26160

Unconventional superconductivity in

Yuan Cao¹, Valla Fatemi¹, Shiang Fang², Kenji Watanabe³, Takashi Taniguchi³, Efthimios Kaxiras^{2,4} & Pablo Jarillo–Herrero¹ magic-angle graphene superlattices

Quasi-Crystals in Twisted Graphene

30 degree misaligned bilayer graphene: 12 fold symmetry quasi crystal

W2 Wed 5:30; Joung Real Ahn (experiment)

W3 Wed 18:15; Pilkyung Moon (theory)

S.J. Ahn et al., Science in press (2018)

ARPES data on quasicrystals

Intercalation of Graphene/MoS₂ Heterolayer

Magnetotransport measurement:

- Intermediate intercalation of discrete heterointerfaces
- Charge transfer to individual layers

D. K. Bediako *et al*., Nature in press (2018)

Electrochemical devices deterministically

stacked hBN/graphene/MoS2

Next Keynote Speech by J. Smet

