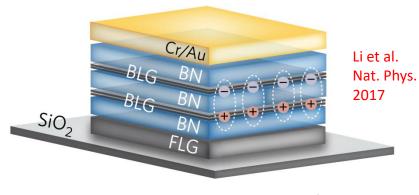
Graphene 2018 – June 26-29 (Dresden, Germany)

Two component superfluid Bose-Einstein condensate of indirect excitons in two-layer Hall systems complementary filled

Janusz E. Jacak Department of Quantum Technology, Wrocław University of Science and Technology, Poland


Supported by NCN projects P.2011/02/A/ST3/00116 and P.2016/21/D/ST3/00958

- Twin Hall systems
- Thin barrier blocking inter-layer tunneling
- hBN for graphene, GaAlAs for GaAs

 $d \propto l_B, \quad l_B = \sqrt{rac{\hbar}{eB}}$ ~3nm graphene ~10nm GaAs

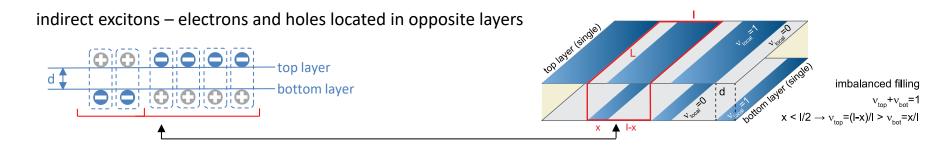
superfluidity of Bose-Einstain condensate of indirect excitons in competition with reentrant IQHE

 $\nu_T = \nu_{\rm top} + \nu_{\rm bot} = 1$

Theory:

- Lozovik 1976
- Gorkov et al. 1968
- Halperin et al. 1984
- Fertig 1987
- Mac Donald et al. 2001
- Jacak 2018

Experiment:


- b-graphene/hBN/b-graphene
 - Kim et al. 2017
 - Dean et al. 2017
- GaAs/GaAlAs/GaAs
 - Klitzing et al. 2004
 - Eisenstein et al. 2003
 - Tutuc et al. 2007

our proposition: the stripe-model

stripes with v=1 alternately with v=0 complementary in both layers

wave-function of indirect excitons in Landau gauge \rightarrow k-space striping

$$\begin{split} \psi_{k,n,\lambda}\left(x,y,\sigma\right) & \qquad \text{LLL (n=0),} \\ &= Ce^{iky - \frac{\left(x + \alpha k l_B^2\right)}{2l_B^2}} \omega_n\left(\frac{x + \alpha k l_B^2}{l_B^2}\right) \delta_{\lambda,\sigma} & \qquad \text{a=1 for electron} \\ & \alpha = 1 \text{ for hole} \\ & w_n - \text{Hermite polynomial} \\ & \text{the same density for } \alpha k = const \end{split}$$

$$\begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf$$

two-component Bogolubov model (BEC superfluidity)

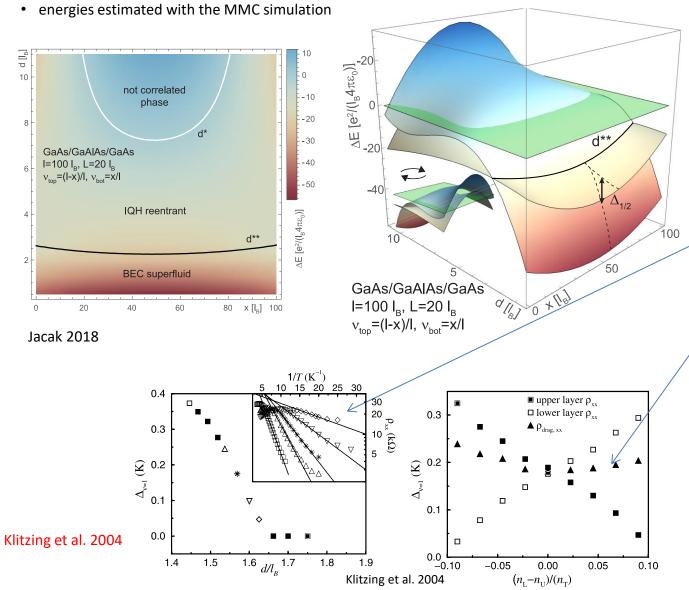
$$\begin{split} H &= H^{a} + H^{b} = \sum_{p} E_{p}^{a} a_{p}^{+} a_{p} + \frac{1}{2S} \sum_{\substack{p_{1}, p_{2}, p_{3}, p_{4} \\ p_{1} + p_{2} = p_{3} + p_{4}}} u_{a}(|p_{1} - p_{4}|) a_{p_{1}}^{+} a_{p_{2}}^{+} a_{p_{3}} a_{p_{4}} + \sum_{p} E_{p}^{b} b_{p}^{+} b_{p} + \frac{1}{2S} \sum_{\substack{p_{1}, p_{2}, p_{3}, p_{4} \\ p_{1} + p_{2} = p_{3} + p_{4}}} u_{b}(|p_{1} - p_{4}|) b_{p_{1}}^{+} b_{p_{2}}^{+} b_{p_{3}} b_{p_{4}} \\ a_{0}^{+} &= a_{0} = \sqrt{N_{0}^{a}} \\ H^{a} &\simeq \frac{1}{2S} u(0) N_{0}^{a^{2}} + \sum_{p} \left[E_{p}^{a} + \frac{N_{0}^{a}}{S} u_{a}(|p|) \right] a_{p}^{+} a_{p} + \frac{N_{0}^{a}}{2S} \sum_{p \neq 0} u_{a}(|p|) (a_{p}^{+} a_{-p}^{+} + a_{p} a_{-p}) \end{split}$$
Bogolubov diagonalization

olubov diagonalizati

$$a_{p} = \alpha(p)\tilde{a}_{p} + \beta^{*}(p)\tilde{a}_{-p}^{+}, a_{p}^{+} = \alpha^{*}(p)\tilde{a}_{p}^{+} + \beta(-p)\tilde{a}_{-p}$$

$$u_{a}(0)N_{0}^{a2} + \Delta E^{a} + \sum_{p}\epsilon_{p}^{a}\tilde{a}_{p}^{+}\tilde{a}_{p}$$

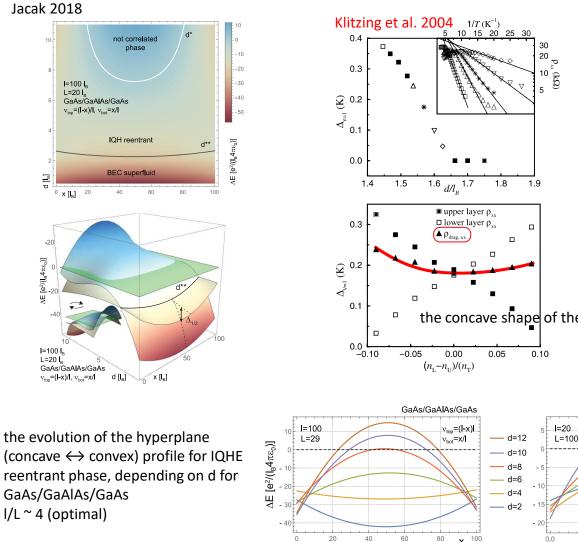
$$superfluidity condition$$

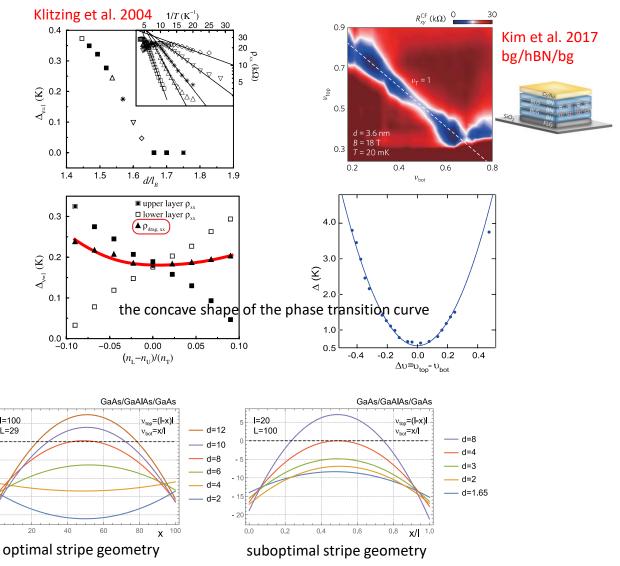

$$\epsilon_{p}^{a} \simeq c^{a}|p| \quad c^{a} = \sqrt{\frac{N_{0}^{a}u_{a}(0)}{m_{a}^{*}S}} \quad u_{a}(0) > 0$$

- the indirect exciton system has **two-component** \rightarrow two possible exciton vertical polarizations ٠
- for repulsion optimization the stripe structure is also necessary \rightarrow stripes in k-space, which is equivalent with ٠ stripes in both layers with local filling v = 1 alternately with v = 0

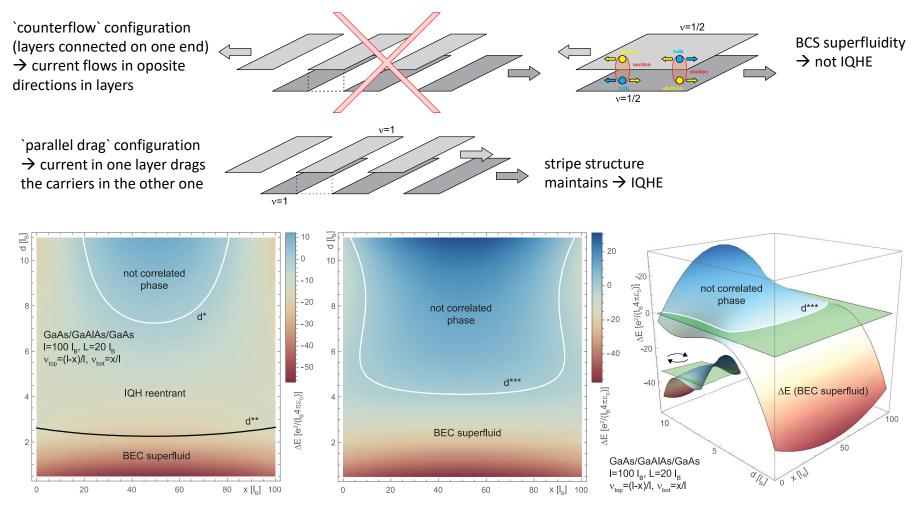
excitons

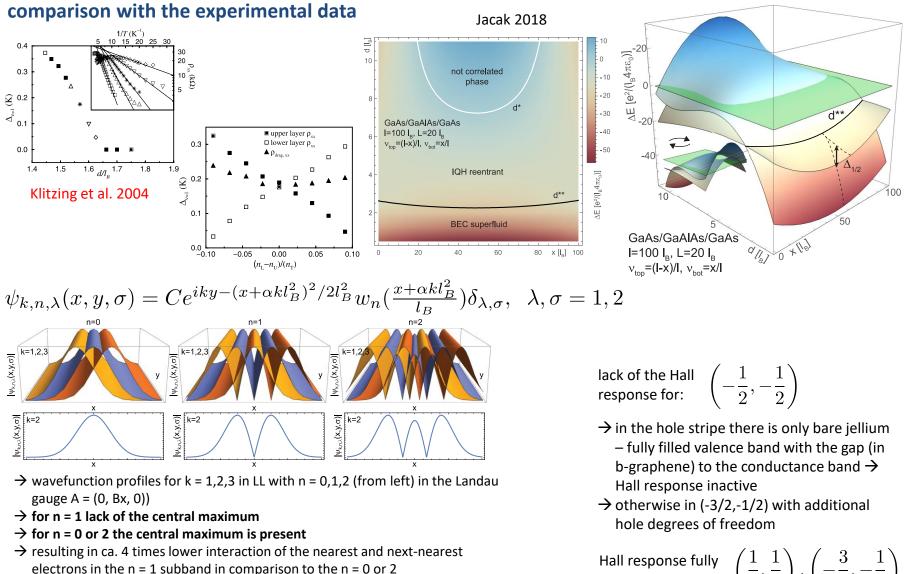
- energy competition between different phases \rightarrow phase diagrams




- 3d view of hyperplanes of competing energies
- for the balanced filling the activation energy Δ_{1/2} for superfluid phase compared with experimental value (taken from the temperature dependence of the resistivity)
- the concave shape of the critical curve d** in agreement with the measured imbalance dependence of the drag longitudinal resistivity

Vrocław University f Science and Technolog


comparison with the experimental data


two disitnct dymanic configurations

phase diagram for counterflow configuration

disappearance of the reentrant IQHE phase \rightarrow the domination of the superfluid BEC phase up to curve d^{***} (0 energy gain)

 \rightarrow leading to the absence of the superfluidity of the BEC condensate for n = 1 LLL in b-graphene (visible in exp. Liu et al. Nat. Phys. 2017, Li et al. Nat. Phys. 2017)

Hall response fully $\left(\frac{1}{2}, \frac{1}{2}\right), \left(-\frac{3}{2}, -\frac{1}{2}\right)$

