Low-Frequency Contact Noise mitigation in graphene-FETs

Ramon Garcia-Cortadella, Andrea Bonaccini Calia, Eduard Masvidal-Codina, Xavier Illa, Elena del Corro García, Jessica Bousquet, Clement Hebert, Rosa Villa, Anton Guimerà, Jose A. Garrido

Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Advanced Electronic Materials and Devices Group (AEMDG)
Group Leader: Jose A. Garrido
Low-frequency noise (LFN) limits sensing applications of graphene

- Minimizing the noise level is crucial to maximize the sensitivity of the device

\[I_{ds} = G_m \Delta V_{gs} \]

\[\Delta V_{gs\text{-signal}} + \Delta V_{gs\text{-noise}} \]
How is noise power measured?

\[S_I = \frac{a}{f^b} \quad b \approx 1 \]

\[I_{ds-rms} = \sqrt{\int S_I \, df} \propto \sqrt{a} \]
What is the origin of noise?

- Charge trapping-detrapping noise
- Mobility fluctuation noise

\[
\frac{S_I|_{\Delta N}}{I_{ds}^2} \propto \frac{1}{n^2 A}
\]

Is noise generated at the contacts?

If current was injected mainly through the edge of graphene it’d be one or another

\[
\frac{S_{Rc}}{R_c^2} \propto \frac{1}{A_c n^2} \quad \frac{S_{Rc}}{R_c^2} \propto \frac{1}{A_c}
\]
What is the \textit{geometric dependence and origin} of contact noise?

We want to \textbf{measure contact noise}

We want to \textbf{eliminate} it
First, what is the **geometric dependence** of contact resistance?

- z-plane injection and edge injection have different geometry dependence
First, what is the geometric dependence of contact resistance?

- z-plane injection and edge injection have different geometry dependence

Injection through the edges dominates!
Then, what is the **geometric dependence** and **origin** of contact noise?

- Take the general equation:

\[
\frac{S_I}{I_{ds}^2} = \frac{S_{Rc} + S_{Rch}}{R_T^2}
\]

- If charge trapping-detrapping dominates:

\[
\frac{S_I}{I_{ds}^4} = \frac{k}{A_c n_c^2 V_{ds}^2} R_c^2 + \frac{k}{A_{ch} n_{ch}^2 V_{ds}^2} R_{ch}^2
\]

- If contacts contribution dominates:

\[
\frac{S_I}{I_{ds}^4} \propto L_c \quad \text{geometry}
\]

\[
\frac{S_I}{I_{ds}^4} \propto R_c^4 \quad \text{origin}
\]
Geometry and origin of contact noise:

\[\frac{I_{\text{rms}}}{I_{ds}} \propto \sqrt{L_c} \]

Noise increases with \(L_c \)

\[\frac{I_{\text{rms}}}{I_{ds}} \propto R_c^2 \]

Charge trapping-detrapping noise
Can contact noise be measured and reduced by geometric design?

- From the general noise equation:

\[
\frac{S_I}{I_{ds}} = \frac{kL_c}{V_{ds}^2W^3} + \frac{kL_{ch}}{V_{ds}^2W^3}
\]

Contact noise can be measured if \(L_c \gg L_{ch} \)

Contact noise can be minimized if \(L_c \ll L_{ch} \)
To summarize

- There is a contribution from contacts to noise

- The geometric dependence of the contact resistance and noise can be determined by changing L_c

- The relative importance of the contacts contribution to noise can be changed by design

$\rho_{\text{sh-channel}} \approx \rho_{\text{SU8}} \approx \rho_{\text{edge}}$

$U_{\text{gs-rms}}(\mu V) \propto \sqrt{L_c}$

$U_{\text{gs-rms}} @ U_{gs}-U_{CNP} = -0.1 V$

$L_c \gg L_{ch}$

$L_c \ll L_{ch}$