

Low-Frequency Contact Noise mitigation in graphene-FETs

Ramon Garcia-Cortadella, Andrea Bonaccini Calia, Eduard Masvidal-Codina, Xavier Illa, Elena del Corro García, Jessica Bousquet, Clement Hebert, Rosa Villa, Anton Guimerà, Jose A. Garrido

Catalan Institute of Nanoscience and Nanotechnology (ICN2) Advanced Electronic Materials and Devices Group (AEMDG) Group Leader: Jose A. Garrido

Low-frequency noise (LFN) limits sensing applications of graphene

$$I_{ds} = G_m \Delta V_{gs}$$
$$\Delta V_{gs-signal} + \Delta V_{gs-noise}$$

EXCELENCIA SEVERO OCHOA

de Nanociència i Nanotecnologia

 Minimizing the noise level is crucial to maximize the sensitivity of the device

What is the origin of noise?

- Charge trapping-detrapping noise
- Mobility fluctuation noise

[Blandin. Nat. Nanotech. 2013 and Dmitriev et.al. J. Appl. Phys, 2009]

EXCELENCIA SEVERO OCHOA

de Nanociència i Nanotecnologia

If current was injected mainly through the edge of graphene it'd be one or another

What is the **geometric dependence** and **origin** of contact noise?

EXCELENCIA SEVERO OCHOA

de Nanociència i Nanotecnologia

 z-plane injection and edge injection have different geometry dependence

First, what is the **geometric dependence** of contact resistance?

 z-plane injection and edge injection have different geometry dependence

Injection through the edges dominates!

Then, what is the **geometric dependence** and **origin** of contact noise?

• Take the general equation:

$$\frac{S_I}{I_{ds}^2} = \frac{S_{R_c} + S_{R_{ch}}}{R_T^2}$$

• If charge trappingdetrapping dominates: If contacts contribution dominates: EXCELENCL SEVERO

OCHOA

de Nanociència i Nanotecnologia

$$\frac{S_I}{I_{ds}^4} = \frac{k}{A_c n_c^2 V_{ds}^2} R_c^2 + \frac{k}{A_{ch} n_{ch}^2 V_{ds}^2} R_{ch}^2 \qquad \qquad \int \frac{S_I}{I_{ds}^4} \propto L_c \quad \text{geometry}$$

$$\frac{S_I}{I_{ds}^4} \propto R_c^4 \quad \text{origin}$$

Geometry and origin of contact noise:

Can contact noise be **measured and reduced** by geometric design?

• From the general noise equation:

Institut Català de Nanociència i Nanotecnologia

To summarize

• There is a contribution from contacts to noise

• The geometric dependence of the contact resistance and noise can be determined by changing L_c

• The relative importance of the contacts contribution to noise can be changed by design

trap state