

Spin, valley, and exchange proximity effects in graphene van der Waals heterostructures

Deutsche Forschungsgemeinschaft

Jaroslav Fabian

Institute for Theoretical Physics University of Regensburg

SPP 1666

hBN

insulator

Crl₃

ferromagnet

graphene semimetal germanene, silicene

MoS₂ phosphorene NbSe₂ semiconductors

superconductors

heterostructures

proximity effects?

What is the band gap of phosphorene? from DFT/GW to QMC

T. Frank et al, arXiv:1805.10823

spin-orbit coupling in graphene band-structure topologies in a transverse E-field

Relativistic interaction (SOC) kills the relativistic massless Dirac band structure!

Quantum spin Hall effect

Quantum Spin Hall Effect

Kane and Mele, Phys. Rev. Lett. 95, 226801 (2005)

Topological protection

Kane and Mele, QSHE

 $\lambda_{IA} = \lambda_{IB}$

Helical:

spin is locked to momentum

intrinsic graphene: weak SOC gap of 25 µeV

two ways we follow to increase SOC in graphene

functionalizing graphene with adatoms:

Local <u>random</u> SOC

Uniform *proximity* SOC

From 10 µeV to 1-10 meV

Graphene on transition-metal dichalcogenides (MoS₂, WSe₂, ...):

explore proximity physics

Optical orientation in TMDCs: valley Zeeman effect

optospintronics graphene on TMDC optical spin injection into graphene

M. Gmitra, and J. Fabian, Phys. Rev. B 92, 155403 (2015)

optospintronics experiment

Luo et al (Kawakami), Nano Letters 17, 3877 (2017) A. Avsar et al (Kis), ACS Nano 11, 11678 (2017)

Quantum valley-spin Hall effect in Gr on WSe₂

M. Gmitra, D Kochan, P. Högl, and J. Fabian, PRB 93, 155104 (2016)

Spin-orbit coupling in spin relaxation in graphene

First generation of graphene devices Gr/SiO₂

D. Kochan et al, PRL 112, 116602 (2014); PRL 115, 196601 (2015)

spin relaxation is due to resonant scattering off local magnetic moments

exp: no spin anisotropy

Second generation of graphene devices BGr/hBN

C. Leutenantsmeyer et al, arXiv: 1805.12420

$$\tau_{s\perp} \approx 10 \ \tau_{s\parallel}$$

spin relaxation is due to spin-orbit coupling

Evidence for valley Zeeman effect in proximity graphene on TMDCs

Theoretical prediction for giant spin relaxation anisotropy in graphene on TMDCs A. Cummigs, J. Garcia, J. Fabian, and S. Roche, Phys. Rev. Lett. 119, 206601 (2017)

$$\boldsymbol{\tau}_{s\perp} = (\mathbf{10} - \mathbf{100}) \boldsymbol{\tau}_{s|}$$

experiment: graphene on MoS₂

T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, Nano Lett. 17, 7528 (2017)

experiment: graphene on WS₂

L. A. Benítez, J. F. Sierra, W. Savero Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Nature Physics 2017 doi:10.1038/s41567-017-0019-2

Quantum valley-spin Hall effect in Gr on WSe₂

M. Gmitra, D Kochan, P. Högl, and J. Fabian, PRB 93, 155104 (2016)

emergence of (pseudo) helical edge states!

protected edge states in Z₂=0 (trivial) system

T. Frank, P. Högl. M. Gmitra, D. Kochan, and J. Fabian, PRL 120, 156402 (2018)

Topological protection

$\langle \Psi \mid V \mid T\Psi \rangle = 0$

edge states

no backscattering !!!

What can we do (spin-wise) with 2D materials that we cannot do with conventional ones?

Field effect spintronics

Electric control of SOC in QWs: Datta-Das transistor

S. Datta and Das, APL 56, 665 (1990)

Bilayer Graphene on WSe₂

Field-effect spin-orbit valve

spin-orbit valve

M. Gmitra and J. Fabian, Phys. Rev. Lett. 119, 146401 (2017)

Spin transistor

M. Gmitra and J. Fabian, Phys. Rev. Lett. 119, 146401 (2017)

ON

PROXIMITY EXCHANGE

(synthetic magnetic conductors)

Ferromagnetic insulators (YIG, EuO, EuS)

Yang et al (Chshiev), PRL 110, 046603 (2013)

Wang et al (Shi), PRL 114, 016603 (2015) Leutenantsmeyer et al (van Wees), 2D Materials 4, 014001 (2017) Ferromagnetic metals (Co, Ni) <u>and</u> tunnel barriers (MgO, hBN)

Lazic et al (Zutic), PRB 93, 241401 (2016) Zollner et al (JF), PRB 94, 155441 (2016)

B. Huang et al., Nature 546, 270 (2017)

Electric control of magnetization in DMS

H. Ohno et al., Nature 408, 944 (2000)

BLG on Cr₂ Ge₂Te₆: gate-controlled exchange

K. Zollner, M. Gmitra, and J. Fabian, arXiv:1710:08117

BLG on Cr₂ Ge₂Te₆: gate-controlled exchange

K. Zollner, M. Gmitra, and J. Fabian, arXiv:1710:08117

BLG on BLG on Cr₂Ge₂Te₆: gate-controlled exchange (turn the exchange on or off)

K. Zollner, M. Gmitra, and J. Fabian, arXiv:1710:08117

Arbeitsgruppe J. Fabian, U Regensburg

