

SLG Functionalized MEA for Enhanced Detection of Neural Network Development

Amira El Merhie

Daisuke Ito, Ilaria Colombi, Sandeep Keshavan, Neeraj Mishra, Vaidotas Miseikis, Alberto Diaspro, Camilla Coletti, Michela Chiappalone, Silvia Dante

Italian Institute of Technology & University of Genoa, Genoa, Italy

Scientific Background

Scientific Background

Microelectrode Array (MEA)

Application of MEAs

- Electrophysiology tool
- Extensive *in vitro* studies
- Recording of the spontaneous activity of primary neuronal networks
- Recordings used as an assay for network performance in applied settings

Description

- Consists of a discrete number of metal electrodes integrated on a **solid substrate** (glass or silica)
- Planar gold, titanium and platinum are the most common electrode materials
- Encapsulated by a glass ring to perform **cell cultures** on the chips

Problems Faced/Drawbacks Low signal-to-noise ratio (SNR)

Improvements

- Chemical functionalization of the electrodes
- Topographical modification increasing roughness
- Fabrication of porous electrodes
- Graphene MEAs consisting of graphene electrodes

??

Exploring the interplay between the carbon based interface and neuronal networks during the complete developmental phase at whole network scale

Role of Single Layer Graphene (SLG) in (MEAs)?

SLG grown by chemical vapor deposition on Cu foil may be considered extremely favorable in the field of biosensor development

✓ transparency

✓ scalability

 convenient transfer onto any substrate, including flexible ones

Large Grain SLG (LG-SLG)

Methodology

Methodology

Raman Characterization

PDL = poly-D-lysine

El Merhie A., Ito D. et al., Sensors and Actuators B: Chemical, submitted

Confocal Microscopy on Immunolabeled Samples

- Comparable morphology of healthy cells of the neuronal network on LG-SLG and control substrates
- ✓ Total cell density ↑ during the development of both LG-SLG and control cultures
- ✓ Higher number of neurons on LG-SLG

DIV: developmental phase

El Merhie A., Ito D. et al., Sensors and Actuators B: Chemical, submitted

Mean firing rate (spikes/s)

Mean bursting rate (burst/min)

El Merhie A., Ito D. et al., Sensors and Actuators B: Chemical, submitted

Graphene 2018, Dresden, Germany

Conclusions & Perspectives

- ✓ Long-term development of neuronal networks on LG-SLG interface from the first week in vitro up to complete network maturation
- ✓ No major morphological differences with respect to control have been detected (healthy cultures)
- ✓ The higher survival rate, the higher number of adhered cells and firing activity → LG-SLG devices are compatible with physiological functionality of neuronal network → provide an improved detection capability (due to a better neuron/substrate coupling)
- ✓ Neuronal network activity was detected earlier on LG-SLG and a more synchronous behavior of the network was recorded

→ Results are in agreement with single neuron synaptogenesis study on SLG versus glass substrates by patch clamp (Keshavan et al, Acta Biomaterialia, 2017)

THANK YOU for Your Attention!

- **Dr. Alberto Diaspro**
- Dr. Sandeep Keshavan
- Dr. Michela Chiappalone
- Ms. Ilaria Colombi
- Dr. Neeraj Mishra
- Dr. Camilla Coletti

