

Graphene meandered dipole antenna for low-cost and flexible RFID application

Sasmita Dash, G. Verma and A. Patnaik Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee, India sdash@ec.iitr.ac.in

Introduction

Overview of RFID antennas

Graphene meandered dipole antennas

Result and discussion

Conclusion

<u>RFID:</u> Radio Frequency Identification

- A technology which uses RF signals for automatic identification of objects or people
- Provide unique identification that allows for a wide range of application
- > Use the wireless communication technique to facilitate the system design
- Does not require physical sight or contact between reader/scanner and the tagged item

- RFID tags have read/write memory capability.
- More data can be stored in an RFID tag.
- Tag code data is 100% secure and cannot be changed or duplicated
- Can stand extreme conditions and temperatures
- > No need of physical contact between data carrier and communication devices
- > No line of sight necessary to read/write data.
- Do identify unique item
- > Low error rate, long read range, portable database
- > Multiple items can be read in a single scan

Overview of RFID Antennas

Aperture coupled circular patch antenna

S. K. Padhi, N. C. Karmakar, C. L. Law, and S. Aditya, "A dual polarized aperture coupled circular patch antenna using a C-shaped coupling slot," IEEE Trans. Antennas Propag., vol. 51, no. 12, pp. 3295–3298, Dec. 2003

Folded-slot antenna

S.-Y. Chen and P. Hsu, "CPW-fed folded-slot antenna for 5.8 GHz RFID tags," Electron. Lett., vol. 24, pp. 1516–1517, Nov. 2004.

Planar inverted-F antenna

M. Hirvonen, P. Pursula, K. Jaakkola, and K. Laukkanen, "Planar inverted-F antenna for radio frequency identication," Electron. Lett., vol. 40, pp. 848–850, Jul. 2004.

G. Marrocco, "Gain-optimized self-resonant meander line antennas for RFID applications," Antennas Wireless Propag. Lett., vol. 2, no. 21, pp. 302–305, 2003.

stacked three-layer meander line antenna

K. Ide, S. Ijiguchi, and T. Fukusako, "Gain enhancement of low-profile, Electrically small capacitive feed antennas using stacked meandered lines," Int. J. Antennas Propag., vol. 2010, p. 606717, 2010.

Graphene

- High electron mobility
- Great conductor of electricity
- Highest current density
- > Almost Transparent

- > Very stretchable and can be used as a flexible conductor
- > Can be easily transferred / integrated on flexible substrate

Due to its unique properties, Graphene being alternate promising material for design of RFID antennas

Initial work :

Graphene Meandered Line Dipole Antenna (1)

raphene

June 26 - 29 Dresden (Germany)

Value of geometric parameter of antenna

Parameters	Value	Parameters	Value
	(mm)		(mm)
W	94	L	25
W1	5	L1	5
W2	5	Ws	120
W3	11.5	Ls	40
W4	16.5		

I I T ROORKEE

12

Gain of antenna

Present Work: Graphene Meandered Line Dipole Antenna (2)

Top View

Value of geometric parameter of antenna

Parameters	Value (mm)	Parameters	Value (mm)	Parameters	Value (mm)
L1	25	L6	7.5	W5	13.25
L2	20	W1	15	Ls	72
L3	13.5	W2	5	Ws	124
L4	8.5	W3	4.5	Hs	0.1
L5	5	W4	6.25		

Electric field distribution of antenna

S₁₁ parameter of antenna

Radiation pattern of antenna @ 890 MHz

Band width = 18% (820 -980 MHz)

Omnidirectionality

Efficiency of antenna

3D far-field Gain pattern of antenna

Graphene meandered line dipole antenna on paper substrates makes the device flexible

The Proposed antenna provides 3 dB of gain, band width of 18% (820 -980 MHz), 76% of radiation efficiency and omnidirectional radiation pattern.

The potential of the proposed graphene meandered dipole antennas is promising for low-cost and flexible RFID applications.

Thank You so much for your kind attention

