Dirac electrons in a dodecagonal graphene quasicrystal

(It was published online at Science, 28 June, 2018)

Joung Real Ahn Department of physics, Sungkyunkwan University, Korea

Sung Joon Ahn, Pilkyung Moon, Tae-Hoon Kim (co-first authors)

Hyun-Woo Kim, Ha-Chul Shin, Eun Hye Kim, Hyun Woo Cha, Se-Jong Kahng, Philip Kim, Mikito Koshino,

Young-Woo Son*, Cheol-Woong Yang* and Joung Real Ahn* (co-corresponding authors)

(It was published online tomorrow at Science, 28 June, 2018)

(Sungkyunkwan

University, Korea)

Experiments

Prof. Joung Real Ahn (Sungkyunkwan University, Korea)

Prof. Se-Jong Kahng (Korea University, Japan)

Prof. Philip Kim (Harvard University, USA)

Prof. Cheol-Woong Yang (Sungkyunkwan University, Korea)

Theoretical calculations

Prof. Pilkyung Moon (New York University Shanghai, China)

Prof. Mikito Koshino (Osaka University, Japan)

Prof. Young-Woo Son (Korea Institute for Advanced Study, Korea)

Motivation-1

Quantum mechanics

Non-relativistic electrons

Crystal (Periodic)

Quasicrystal (Quasiperiodic)

Amourphous (Disorder)

Relativistic electrons (Dirac electrons) **Crystal** (Periodic)

Graphene

Motivation-2

Motivation-3

Smoking gun-1: Quasicrystal (atomic structure)

Just rotate it !?

Remaining question ?

It is nice!
but
Is it real a CVID process for nuclear weapons?
(Complete, Verifiable, Irreversible
Dismantlement)

It's beautiful!
but
Is it a quasicrystal just
in an atomic structure ?

Smoking gun-2: Quasicrystal (electronic structure)

Real
Dirac electrons
in a quasicrystal

How to grow a graphene quasicrystal?

How to grow a graphene quasicystal-1

How to grow a graphene quasicystal-2

Low energy electron diffraction (LEED)

Low energy electron diffraction (LEED) pattern

LEED - Experiment

FFT of the atomic structure of the graphene quasicrystal

Low energy electron diffraction (LEED) pattern

Up to 3x4 mm²

Stampfli tiles (rhombuses (red), equilateral triangles (green), squares (blue)

Scaling factor
$$\sqrt{2+\sqrt{3}}$$

Stampfli tiles (rhombuses (red), equilateral triangles (green), squares (blue)

Internal structures of the same Stampfli tile

(Atomic structure model)

Internal structures of the same Stampfli tile

(TEM images)

Exact rotational angle = 30 degree

Theoretical calculations – Tight-binding approach

Experiments

Theoretical calculations – Tight-binding approach

The Dirac cones were numbered from the smallest q (see B-D)

Theoretical calculations – Tight-binding approach

Conclusion

Quantum mechanics			
Non-relativistic electrons	Crystal (Periodic)	Quasicrystal (Quasiperiodic)	Amourphous (Disorder)
Relativistic electrons (Dirac electrons)	Crystal (Periodic) Graphene	Ahn ²	
		(Sung Jun Ahn) Joung Real Ahn)	

New experimental research field just began : Dirac electrons in a quasicrystal

Conclusion

- 1. New experimental research field just began : Dirac electrons in a quasicrystal (which can be extended to other physical systems)
- 2. This and following exciting experimental results in this field will require new theoretical approaches
- 3. This will contribute to theoretical calculations for a solid without a translational symmetry

You can contact

Prof. Pilkyung Moon (New York University Shanghai, China)(Workshop 3, Wed 27, 18:15-18:30) **Prof. Young-Woo Son (Korea Institute for Advanced Study, Korea)**

for detailed theoretical calculations and backgrounds

They are in this Graphene-2018 conference somewhere (?)

Thank You

8

See you at the new experimental research field (Dirac electrons in a quasicrystal)