Chemistry of fluorographene towards advanced sensing, magnetic and environmental technologies

Radek Zbořil

Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.

radek.zboril@upol.cz

Fluorographene (GF) is the thinnest known insulator and surprisingly reactive graphene derivative enabling highly efficient and selective covalent functionalization of graphene via nucleophilic substitution.\(^1\) GF and its derivatives like thiographene and hydroxofluorographene can be used as advanced biosensors (Figure 1) and room temperature 2D magnets (Figure 2), respectively.\(^2\) At the same time, covalent chemistry of GF allows to synthesize various alkyl/aryl derivatives, and halogenated graphenes.\(^3\) Recently discovered cyano-graphene and graphene acid (carboxy-graphene) possess an exceptional affinity to bind metallic and molecular species.\(^4\) The applicability of these derivatives in environmental technologies, prevention of the bacterial resistance to silver nanoparticles,\(^5\) and in the development of sustainable molecular magnets will be demonstrated. Finally, non-covalent hybrids of fluorographene and metal organic frameworks (MOFs) will be introduced as superhydrophobic/oleophilic nanofibrous and hierarchical superstructures for the separation of oil fractions and organic solvents from water.\(^6\)

References


Figure 1: Schematic representation of thiographene-based DNA biosensor.

Figure 2: Schematic representation of hydroxofluorographene representing the first room temperature non-metallic 2D magnet.