To obtain structural and electronic properties of low-dimensional materials at the atomic scale, a new type of transmission electron microscope operating at electron energies between 80 and 20 keV has been developed which allows to undercut the knock-on damage thresholds even of low-Z-number materials, to increase the contrast and to compensate for the reduced resolution at lower electron energies by a new spherical and chromatic aberration corrector. Sub-Angstrom resolution is achieved down to 40 keV in a wide field of view of 4000x4000 pixels [1,2], making the tool predestined for in-situ studies of dynamic effects in low-dimensional materials. As especially non-conducting materials suffer from ionization effects during imaging, which increase at lower voltages [3], sophisticated sample preparation methods are needed to reduce these effects: Here the production of clean surfaces [4] and sandwiching the radiation-sensitive material between two single layers of graphene [5] provide good results. Briefly key instrumental and methodological developments will be outlined and main emphasis will be made on the application for finding very different low-dimensional material’s atomic and electronic structure. We report on the structure of two-dimensional glass [6], charge-density-wave-associated periodic lattice distortions in single-layer 1T-TaSe2 [7] and the structure of 1T-TaS2 intercalated with Pyridine (C5H5N) and Triethylenediamine (C6H12N2) [8]. It will be reported, moreover, on electron-beam-stimulated transformations from point to extended defects in 2H-MoTe2 associated with phase change to distorted 1T’-MoTe2 [9]. Another example shows in-situ the transformation of a 2-dimensional BN structure to an atomic chain [9]. In addition we show by high-resolution TEM and EELS experiments accompanied by DFT calculations that the lithiation between bilayer graphene results in a new highly dense crystalline Li-phase [10].

References


We acknowledge funding from the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts (MWK) of the federal state of Baden-Württemberg, Germany, in the frame of the SALVE project (www.salve-project.de) as well as from the Baden-Württemberg Stiftung GmbH and the European Union Graphene Flagship.