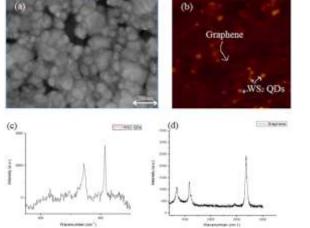
UV Photodetector based on Graphene-WS₂ Quantum dots

Amritanshu Pandey

Rahul Kumar¹, Vijay Kumar Singh², Himanshu Mishra², Anchal Srivastava²


¹Department of Electronics Engineering IIT (BHU) Varanasi

²Department of Physics, BHU Varanasi apandey.ece@iitbhu.ac.in

Abstract:

We report a study on the fabrication and characterization of ultraviolet photodetectors based on graphene-WS₂ quantum dot heterostructure on SiO₂ photodetector substrate. The UV heterostructure interface between WS₂ quantum dots and graphene on a SiO₂ platform have been studied for their future applications towards optical devices. The size, height, and agglomeration limit of the WS₂-QDs samples were characterized by using AFM. The quality and uniformity of WS₂-QDs onto SiO₂ substrate were characterized by Raman spectroscopy. The currentvoltage characteristics of the devices under UV illumination have been performed in the room temperature demonstrated a high sensitivity to UV light and the measured photo-generated current was 37.3µA at a bias of 5 V.

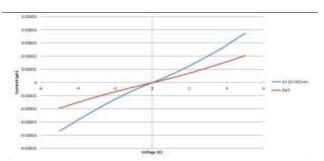


Figure 1: SEM image of agglomerated WS₂ QDs (b) AFM of WS₂ QDs-Graphene (c)Raman Spectra of WS₂ QDs (d)Raman Spectra of Graphene)

Figure 2: Schemetic of WS₂ QDs-Graphene UV photodetector

Figure 3: Dark and photo illuminated currents of WS2 QDs- graphene photodetector.

Conclusion

The device reported is a low cost highly stable CMOS compactble having excellent device properties. The fabricated UV detector also has excellent detectivity of 3.136 ×1012 mHz1/2 W-1 when illuminated from UV sourse of 365 nm.

References

- [1] G. Rawat, D. Somvanshi, H. Kumar, Y. Kumar, C. Kumar, and S. Jit, IEEE Transactions on Nanotechnology, vol. 15, (2016) no. 2, pp. 193. 2016.
- [2] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nature Nanotechnology, vol. 9 (2014), no. 10, pp. 780
- [3] J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, Nature Communications, vol. 5 (2014) p. 5622.