Interfacial Synthesis of Two-Dimensional Polymers

Zhikun Zheng1
Hafeesudeen Sahabudeen2, Haoyuan Qi3, Kejun Liu2, Tao Zhang2, Ute Kaiser3, Xinliang Feng2

1School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
2Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universitaet Dresden, Germany
3Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, University of Ulm, 89081 Ulm, Germany

zhengzhikun@mail.sysu.edu.cn

At present, one of the key challenges faced by the scientific community is to go beyond graphene, a prototypical two-dimensional polymer (2DP, a laterally infinite, one atom- or monomer-unit thin, free-standing network with long-range order along two orthogonal directions), to synthesize its analogues with structural control at the atomic- or molecular-level under mild conditions. Here we present the rational synthesis of monolayer and multilayer 2DPs with rigid and symmetric monomers through reversible coordination and dynamic covalent reactions at an air-water interface and liquid-liquid interface. [1-5] Such 2DPs have single crystalline domains with a lateral size in the range of hundreds nm² to µm². They have a thickness of □ 0.5 – 10 nm and a lateral size in the range of cm² to 4-inch wafer, and can be freely suspended over 20 µm × 20 µm sized holes. They are rigid and flexible, and can be conformed and bonded robustly to nearly any surface, facilitating their integration into devices. Proof-of-concept applications of such 2DPs suggest they are promising materials for energy-related technologies and field-effect transistors.

References


Figures

Figure 1: High-resolution TEM image of 2D polyimine synthesized at an air-water interface.