Electron Transfer of Methylene Blue on graphene monolayer electrodes

Michel Wehrhold

Rodrigo M. lost, Tilmann J. Neubert, Kannan Balasubramanian

School of Analytical Sciences Adlershof (SALSA) & Dept. of Chemistry, Humboldt-Universität zu Berlin, 10099 Berlin

michel.wehrhold@student.hu-berlin.de

Abstract

Methylene blue (MB) is a widely used redox indicator in chemical and biological sensors^[1-3]. While the electron transfer (ET) properties of many other redox active molecules have been investigated on graphene monolayers^[4], there is little information available on the electron transfer interaction of MB at graphene monolayers. Here we have investigated the electrochemical properties of graphene using MB as a probe and deploying voltammetry. The measured data were analysed using different methods^[5-6] to gain fundamental information about the heterogeneous rate constant for ET k^{HET} , the diffusion coefficient D_0 and the extent of reversibility. Furthermore, by patterning graphene electrodes using photolithography we have investigated the effect of electrode size on the kinetic and thermodynamic aspects of electron transfer.

References

- [1] Ye and Baldwin, Anal Chem, 60 (20) (1988) 2263-2268
- [2] Erdem et al. Analytica Chimica Acta, 422 (2), (2000), 139-149
- [3] Xu et al., Electroanal, 15 (3), (2003), 219-224
- [4] Velicky et al., ACS Nano, 8 (10)(2014) 10089-10100
- [5] Compton et al., Understanding Voltammetry: Problems and Solutions, Imperial College Press (2012)

 [6] Laviron, J. Electroanal Chem, 101 (1), (1979), 19-28