Waveguide Integrated Double Layer Graphene-SiN Modulators For On-chip Optical Interconnects

H. F-Y. Watson\(^1\)
J. Wang\(^1\), J. E. Muench\(^1\), D. Zhang\(^1\), V. Sorianello\(^2\), M. Bruna\(^3\), M. Romagnoli\(^2\), A. C. Ferrari\(^1\), and I. Goykhman\(^1,4\)

\(^1\)Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA, Cambridge, UK
\(^2\)Consorzio Nazionale per le Telecomunicazioni (CNIT), National Laboratory of Photonic Networks, Via G. Moruzzi 1, 56124 Pisa, Italy
\(^3\)Nokia-Bell Labs, 21 JJ Thomson Avenue, CB3 0FA, Cambridge, UK
\(^4\)Technion Israel Institute of Technology, Haifa 3200003, Israel

hfyw2@cam.ac.uk

Optical modulators are essential components of optoelectronic links [1]. Si-photonics is an emerging technology for short-reach optical interconnects [1]. On-chip integrated Si electro-refractive (phase) and Si-Ge electro-absorption (amplitude) modulators are currently employed to encode information into guided light [1]. However, Si-based optical modulators are unlikely to meet future requirements of power consumption, insertion loss, and device scaling [1]. Here, we design power efficient Si-graphene amplitude and phase modulators, Fig.1, operating at telecom wavelengths with 10 dB extinction ratio and <1 dB insertion loss with an applied 1V AC voltage around a DC operating point. Their performances in terms of induced phase-shift and loss modulation are shown in Fig.2. Graphene integration on a low-loss SiN platform enables us to reduce insertion losses by tuning the Fermi level [2], miniaturize the device footprint by exploiting the electro-refractive modulation [3], and achieve <1 pJ/bit energy cost [3].

References


Figures

Figure 1: Waveguide-integrated double-layer electro-absorption graphene modulator on SiN

Figure 2: Simulated modulation of phase shift and loss of the propagating optical mode with applied gate voltage for electro-refractive and electro-absorption configurations