Chemical vapour deposition of monolayer superconducting NbSe$_2$

Hong Wang1,2, Xiangwei Huang3, Junhao Lin4, Guangtong Liu3, Zheng Liu2 and Edwin Hang Tong Teo1

1Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
2School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

wong_hong@ntu.edu.sg

The discovery of monolayer superconductors bears consequences for both fundamental physics and device applications. Currently, the growth of superconducting monolayers can only occur under ultrahigh vacuum ($\sim 10^{-10}$ torr) and on specific lattice-matched or dangling bond-free substrates, to minimize environment and substrate induced disorders/defects [1-2]. Such severe growth requirements limit the exploration of novel two-dimensional (2D) superconductivity and related nanodevices. The research presented here demonstrates the growth of monolayer superconducting NbSe$_2$ by salt-assisted ambient-pressure chemical vapour deposition (CVD). Atomic-resolution scanning transmission electron microscope imaging reveals the atomic structure of the intrinsic point defects and grain boundary in monolayer NbSe$_2$, and confirms the low defect concentration in our high-quality film, which is the key to 2D superconductivity. By using monolayer CVD graphene film as protective capping layers, thickness-dependent superconducting properties are observed in as-grown NbSe$_2$ with transition temperature increasing from 1.0 K in monolayer to 4.6 K in 10-layer [3]. The demonstrated method could be applied for growing a large number of highly crystalline 2D transition metal dichalcogenides (TMDs) on substrates [4].

References

Figures

Figure 1: (a) Optical image of uniform NbSe$_2$ crystals deposited on a SiO$_2$/Si substrate. A representative AFM image (inset) shows the typical thickness is 1.1 nm. (b) Temperature dependence of the longitudinal resistance R_{xx} for a monolayer NbSe$_2$ device (upper left inset). Lower right inset: Superconductivity in monolayer, 5-layer and 10-layer NbSe$_2$ devices.