Spectroelectrochemistry and spectroelectrophotonics on an exfoliated van der Waals graphene/TMD bilayer

Tim Verhagen1, Krishna Sampathkumar2, Katerina Jurkova2, Milan Bousa2, Martin Kalbac2, Otakar Frank2 and Jana Vejpravova1

1Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16, Prague 2, Czechia,
2J Heyrovsky Institute of Physical Chemistry of the CAS, v.v.i., Dolejskova 2155/3, CZ-182 23 Prague 8, Czechia

verhagen@mag.mff.cuni.cz

Direct bandgap, monolayer transition metal dichalcogenides (TMDs) recently attracted a lot of attention due to their unique light-matter interactions. Van der Waals heterostructures (vdWh) consisting of combinations of different TMDs are considered a promising candidate for novel optoelectronic devices [1]. Up to now, most attention has been paid to electron and energy transfer in vdWh consisting of different TMDs. However, not much is known about energy and charge transfer between monolayer TMDs and graphene (GN) [2], and the possibilities of using the energy or charge transferred to GN to change the Fermi level of GN optically.

Using photoluminescence (PL), Raman scattering spectroscopy and μ-droplet spectroelectrochemistry (SECH) [3], we studied the interactions in a vdWh consisting of exfoliated monolayer GN and exfoliated monolayer MoS\textsubscript{2} or WS\textsubscript{2}. Using a careful analysis of the changes in the intensity and Raman shift of the Raman modes of both the TMD and the GN, and the PL as a function of either the photon flux or the applied gate voltage, the interactions between both layers are studied. Furthermore, we addressed the efficiency of the spectroelectrophotonics with respect to the SECH.

The work was supported by the Czech Science Foundation (18-20357S) and ERC-2016-STG (716265).

References