Lattice Matched Epitaxial Graphene Grown Using High Temperature Molecular Beam Epitaxy

Alex Summerfield¹, Andrew Davies¹, Juan D. Albar¹, James C. Thomas¹, Tin S. Cheng¹, Vladimir V. Korolkov¹, Emily Stapleton¹, James Wrigley¹, Nathan L. Goodey¹, Christopher J. Mellor¹, Andrei N. Khlobystov², C. Thomas Foxon¹, Laurence Eaves¹, Sergei V. Novikov¹ and Peter H. Beton¹.

¹ School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK.
² School of Chemistry, University of Nottingham, University Park, Nottingham, UK.

alex.summerfield@nottingham.ac.uk

Aligned graphene grown at high temperatures on hexagonal boron nitride (hBN) using molecular beam epitaxy (MBE) is found to exhibit large-period hexagonal moiré patterns when imaged using atomic force microscopy (AFM) [1]. Raman spectra of the strained graphene reveal red-shifting and splitting due to strain variations across the moiré unit cell. The red-shifting of the 2D peaks increases with increasing moiré periodicity, indicative of greater strain in the graphene monolayer [2]. At the highest growth temperature (~1710°C) we observe a divergence of the moiré periodicity and a single narrow red-shifted 2D peak that suggests that the graphene is lattice matched to the hBN substrate. We further analyse the conductivity of the lattice-matched graphene using conductance AFM and observe decreased surface conductance in areas of high strain. We relate our observations to theoretical models of bang gap formation in graphene/hBN heterostructures.

References


Figures

Figure 1: Raman spectra of MBE graphene grown on hBN showing the evolution of G and 2D bands with increasing moiré periodicity from a to e. (insets) AFM images showing the corresponding increase in moiré period for the samples shown in a to d with a divergent pattern in e for the highest growth temperature of 1710°C in which the graphene is lattice matched. AFM image scale bars all 100 nm.

Figure 2: a Conductance AFM image of lattice-matched graphene grown on hBN. Scale bar 50 nm. b Conductance profile across the region indicated by the yellow line in a showing the decrease in conductance across the lattice matching region. The spike in conductivity is associated with an increased local density of
states due to a lattice dislocation in the graphene monolayer.