Graphene electrically tuneable third harmonic generation

G. Soavi¹

G. Wang¹, H. Rostami², D. Purdie¹, D. De Fazio¹, T. Ma¹, B. Luo¹, J. Wang¹, A. K. Ott¹, D. Yoon¹, S. Bourelle¹, J. E. Muench¹, I. Goykhman¹, S. Dal Conte³, M. Celebrano³, A. Tomadin⁴, M. Polini⁴, G. Cerullo³, A. C. Ferrari¹

1 Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK

2 Nordic Institute for Theoretical Physic, Roslagstullsbacken 23, 106 91 Stockholm, Sweden

4 Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy 5 Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy gs544@cam.ac.uk

Layered materials have a strong nonlinear optical response [1]. Single Layer Graphene (SLG) can provide electrically tuneable nonlinearities over a broad bandwidth thanks to the linear dispersion of Dirac fermions [2]. We show that the THGE in SLG can be modulated by over one order of magnitude by controlling its Fermi Energy [3]. We perform gate-dependent (E_F) measurements on back-gated exfoliated SLG on Si/SiO₂. For the excitation of SLG we use the idler beam of an OPO (Coherent), focused by a 40X reflective objective to avoid chromatic aberrations. The THG signal is collected by the same objective and delivered to a spectrometer (Horiba iHR550) equipped with a nitrogen cooled Si CCD. The idler spot-size is~4.7µm. This corresponds to an excitation fluence~70µJ/cm² for the average power (1mW) used in our experiments. The idler pulse duration is~300fs. Fig.1 compares THGE experiments and theory for ħω0=0.59eV and over different Te 700meV<E_F<+150meV corresponding to ≈150V<V_G<+150V. As a function of V_G, SLG displays a THG intensity enhancement by over a factor of 20, starting when $\hbar\omega_0 < 2|E_F|$. The best agreement between theory and experiments is reached when \approx 1500K<Te<2000K. The observed gatedependent enhancement of the THGE can

be qualitatively understood as follows. The linear optical response of SLG at Te=OK has a "resonance" for $\hbar\omega_0 = 2|E_F|$, the onset of intra- and inter-band transitions in SLG. In a similar way, for the SLG third-order nonlinear optical response, resonances occur at Te=OK for multi-photon transitions such that $m \cdot \hbar \omega = 2 |E_F|$ with m=1,2,3, which correspond to incident photon energies $\hbar\omega_0=2|E_F|$, $|E_F|$, $2/3|E_F|$ [3]. This result paves the way to novel SLG-based nonlinear photonic devices, in which the gate tunability of THG may be exploited to implement on-chip schemes for optical communications and signal processing, ultra-broadband such as frequency converters.

References

[1] A. Säynätjoki, et al., Nat. Comms. 8 (2017) 893.

[2] H. Rostami and M. Polini, Phys. Rev. B **93** (2016) 161411.

[3] G. Soavi et al., arXiv:1710.03694 (2017).

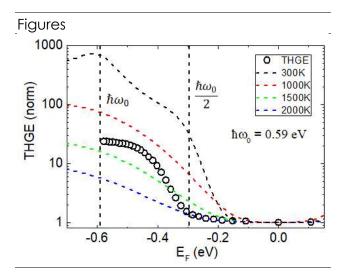


Figure 1: Experiments (circles) and theory (dotted lines) for THGE as a function of E_F and T_e for SLG on Si/SiO₂ at incident photon energies of 0.59eV.