Charge-controlled biexcitons in monolayer WSe₂

Alejandro R-P. Montblanch¹

Matteo Barbone^{1,2}, Dhiren M. Kara¹, Carmen Palacios-Berraquero¹, Alisson R. Cadore², Domenico De Fazio², Benjamin Pingault¹, Elaheh Mostaani², Han Li³, Bin Chen³, Kenji Watanabe⁴, Takashi Taniguchi⁴, Sefaattin Tongay³, Gang Wang², Andrea C. Ferrari², Mete Atatüre¹

¹Cavendish Laboratory, University of Cambridge, JJ Thomson Ave., Cambridge CB3 0HE, UK

²Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK

³School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

⁴Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0034, Japan

ar820@cam.ac.uk

In atomically thin transition metal dichalcogenides (TMDs) Coulombmediated many-body interactions result in a variety of free and localized complexes, such as excitons and trions. Biexcitons, a two-exciton molecule¹, hold great interest applications such as sources for of entangled photons². Signatures of free biexcitons have been reported in TMDs³, but the inhomogeneously broadened linewidths in the photoluminescence (PL) spectra combined with the lack of electric and magnetic control have so far prevented their manipulation. Here we report direct experimental evidence of two fundamental biexciton complexes in monolayer WSe₂ (1L-WSe₂): the neutral biexciton and the fiveparticle negatively charged biexciton, Fig. 1. We identify and controllably access these via a combination of polarization resolved, gate-controlled (see Fig. 2) and magneticfield dependent PL measurements. We identify the fine-structure of the neutral biexciton and clarify the internal structure of both complexes. Our results prove the existence and unveil the nature of multiexciton complexes in TMDs.

References

- Kim, J. C., Wake, D. R. & Wolfe, J. P. Phys. Rev. B 50, 15099 (1994)
- [2] Li, X. et al. Science **301**, 809 (2003).
- [3] You, Y. et al. Nat. Phy. 11, 477 (2015).

Figure 1: Power dependence of selected PL peaks in 1L-WSe₂. A superlinear behaviour indicates the biexcitonic nature of XX⁰ and XX- as opposed to X⁰.

Figure 2: PL intensity as a function of gate bias across 1L-WSe₂. Dashed lines are a guide the eye.