Exploring quantization in graphene nanoribbons

Stephen R. Power^{a,b}

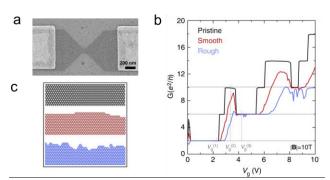
- J.M. Caridad^b, M.R. Lotz^b, A.A. Shylau^b, J.D. Thomsen^b, L. Gammelgaard^b, T.J. Booth^b, A.-P. Jauho^b & P. Bøggild^b (Ref. 1)

- J. Aprojanz^c, P. Bampoulis^{c,d}, S. Roche^{a,e}, A.-P. Jauho^b, H. Zandvliet^d, A.A. Zakharov^f & C. Tegenkamp^{c,g} (Ref. 2)

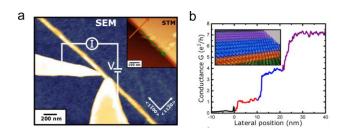
a. Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain / b. CNG and DTU Nanotech, Denmark / c. Institut für Physik, Technische Univ. Chemnitz, Germany / d. MESA+ Institute for Nanotechnology, Univ. Twente, Netherlands / e. ICREA, Barcelona, Spain / f. MAX IV and Lund Univ., Sweden / g. Institut für Festkörperphysik, Leibniz Univ. Hannover, Germany

stephen.power@icn2.cat

Conductance quantization is a defining feature of electronic transport in quasi-one dimensional conductors. In the absence of a magnetic field, confinement results in a sequence of transverse sub-bands with an increasing number of nodes across the device width. In a magnetic field within the quantum Hall regime, transmission is through chiral edge states surrounding a gapped bulk. Here I examine two recent experiments [1,2] displaying unexpected quantization features.


Firstly, I show that a non-uniform gateinduced charge density introduces new transmission channels within the quantum Hall regime for exfoliated graphene nanoribbons on SiO_2 [1] (Fig 1). Unlike the standard quantum Hall edge states, these channels are highly susceptible to disorder and break the expected quantization sequence in two-terminal measurements. Counterintuitively, suppression the of quantization is most evident for weak edge disorder, and a strong edge disorder reintroduces the expected quantization sequence.

Secondly, graphene nanoribbons grown on the sidewalls of SiC mesa structures have previously[3] been shown to present a 1D ballistic channel at the micron scale. New 2-point measurements reveal additional quantised channels at shorter probe separations [2] (Fig 2). Furthermore, these channels are localised in different regions across the ribbon width. These findings are consistent with a model accounting for asymmetric interfaces between the SiC and nanoribbon at each edge.


References

- J.M. Caridad, S.R. Power et al, Nat. Commun. 9 (2018) 659
- [2] J. Aprojanz, S.R. Power *et al*, **in preparation** (2018)
- [3] J. Baringhaus et al, **Nature** 506 (2014) 349

Figures

Figure 1 Experimental geometry (a) and simulated conductance (b) for different edge disorders (c) for graphene nanoribbons on SiO₂. The expected plateau sequence is restored for stronger edge disorder.

Figure 2: 2-point probe setup (a) and conductance vs. probe position across ribbon width (b) for sidewall graphene nanoribbons on SiC.