## Efficient Ammonia Sensors Based on Single Walled Carbon Nanotubes

## Luis Antonio Panes-Ruiz<sup>1</sup>

Mehrdad Shaygan<sup>2</sup>, Vyacheslav Khavrus<sup>1</sup>, Viktor Bezugly<sup>1</sup>, Gianaurelio Cuniberti<sup>1</sup>

<sup>1</sup> Institute for Material Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany.

<sup>2</sup> Advance Microelectronic Center Aachen (AMICA), AMO GmbH, Otto-Blumenthal-str. 25, 52074 Aachen, Germany.

## antonio.panes@gmail.com

Carbon nanotubes (CNTs) have emerged as a promising alternative for highly efficient gas sensing technologies due to their remarkable properties like high surface to volume ratios and the possibility of doping or functionalization according to a specific Single-walled application carbon [1]. nanotubes (SWCNTs) based chemiresistor sensors for the detection of ammonia gas have been proposed and studied in recent years showing a sub-ppm detection limit at ambient conditions (room temperature and fixed humidity) [2]. Still, there are some contradicting arguments on how sensitivity of SWCNT-based sensors towards ammonia can be increased by means of SWCNT doping.

In this work, the fabrication and response of chemiresistor-type gas sensing devices based on networks of pristine single-walled carbon nanotubes (p-SWCNTs), borondoped nanotubes (B-SWCNTs), nitrogendoped nanotubes (N-SWCNTs), and semiconducting nanotubes (sc-SWCNTs) to sub-ppm concentrations of ammonia at room temperature was investigated.

All nanotubes were dispersed without surfactants and the doping was performed via introduction of N or B atoms into the host carbon lattice of nanotubes, not via on-surface molecular dopants.

Electrical characterization and analysis of the structure of fabricated devices showed a close relation between amount and quality of the distribution of deposited nanotubes and their sensing properties. In addition, sensors based on sc-SWCNTs exhibited the highest sensing response to all NH<sub>3</sub> concentrations compared to pristine and doped SWCNTs and a limit of detection of 100 ppb was achieved (Fig. 1). Furthermore, the power consumption of these sensors is approximately 5 orders or magnitude lower than existing commercial ammonia sensors based on metal oxides [3]. Such sensitivity and low power consumption are relevant for applications remote environmental like permanent monitoring or the diagnosis of certain diseases based on the analysis of exhaled breath samples.

## References

Figures

- [1] E. Llobet, Sensors and Actuators B: Chemical, 179 (2013) 32-45.
- [2] F. Rigoni et al, Analyst, 138 (2013) 7392-7399.
- [3] L.A. Panes-Ruiz et al, ACS Sensors, 3 (2018) 79-86.



**Figure 1:** Sensing response  $\Delta R/R_0$  of five devices based on sc-SWCNTs under exposure to different NH<sub>3</sub> concentrations of 100, 400, 700 and 1000 ppb [3].