Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(111)

M. M. Otrokov^{1,2}

I. I. Klimovskikh³, F. Calleja⁴, A. M. Shikin³, O. Vilkov³, A. G. Rybkin³, D. Estyunin³, S. Muff^{5,6}, J. H. Dil^{5,6}, A. L. Vázquez de Parga^{4,7}, R. Miranda^{4,7}, H. Ochoa⁸, F. Guinea^{4,9}, J. I. Cerdá¹⁰, E. V. Chulkov^{1,11,12}, A. Arnau^{1,11,12}

¹Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Donostia-San Sebastián, Spain

²Tomsk State University, Tomsk, Russia

³Saint Petersburg State University, Saint Petersburg, Russia

⁴Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, Madrid, Spain

⁵Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

⁶Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland

⁷Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain

⁸Department of Physics and Astronomy, University of California, Los Angeles, California, USA

⁹Department of Physics and Astronomy, University of Manchester, Manchester, UK

¹⁰Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain

¹¹Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain

¹²Departamento de Física de Materiales UPV/EHU, Donostia-San Sebastián, Spain

mikhail.otrokov@gmail.com

А combined scanning tunneling microscopy, angleand spin-resolved photoemission spectroscopy and density functional theory study of graphene on Ir(111) intercalated with a well-ordered, full presented. Pb monolayer is Lead intercalation between graphene and Ir(111) reduces the coupling to the metallic substrate in such a way that its corrugation becomes negligible and distortions of the linear dispersion largely disappear, while araphene's sublattice symmetry is maintained and it turns out to be *n*-doped. Remarkably, the spin-orbit splittings induced by the proximity of the Ir(111) surface are preserved after Pb intercalation in a wide energy range. We further show that the Pb interlayer induces a complex spin texture and with both in-plane out-of-plane components. Our calculations reveal the origin of the out-of-plane spin components in graphene to trace back to the out-ofplane spin-polarized surface and resonance states of Ir(111), while the Pb interlayer on its own does not induce any vertical spin polarization in the carbon sheet. However, the Brillouin zone folding imposed by the rectangular symmetry of the intercalated Pb layer plays an instrumental role in the spinorbit coupling (SOC) transfer to graphene, as well as in the linearization of its bands. Finally, since no sizeable gap is observed at the Dirac point, we suggest that an intrinsic (Kane and Mele type) SOC does not exceed the extrinsic (Rashba) SOC for graphene on Pb/lr(111).