# Graphene Oxide/Cobalt-based Nanohybrids as Alternative Electrodes for Hydrogen Generation

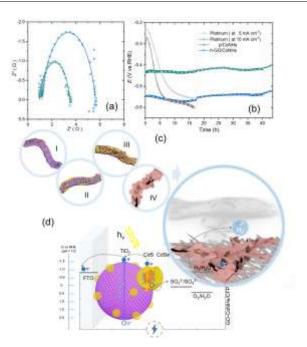
### Fabiola Navarro-Pardo<sup>++</sup>

Xin Tong,<sup>‡</sup> Xin Tong,<sup>†,‡</sup> Ana C. Tavares,<sup>‡</sup> Haiguang Zhao,<sup>‡</sup> Zhiming M. Wang<sup>†</sup> and Federico Rosei<sup>†,‡</sup>

<sup>†</sup>Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China

<sup>‡</sup>Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada fabiola.navarro@inrs.emt.ca

### Abstract


Low-cost nanostructured hybrid materials and optimization of structural designs are key to meet the goal of achieving high performance and stable renewable energy devices.<sup>1,2</sup> We have developed cobaltbased nanohybrids (CoNHs) directly electrospun onto carbon fiber paper and demonstrate their application we as electrodes for hydrogen (H<sub>2</sub>) generation. We focused in the performance of these CoNHs in Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> electrolyte (pH=13) due to its wide application in photocatalysis and photoelectrochemical (PEC) devices.<sup>2</sup> These type of alternative electrodes are relevant to overcome the inherent poisoning of platinum in this sulfur containing electrolyte. We demonstrate that addition of ~12wt% graphene oxide (GO) within the CoNHs can lower the overpotential needed to maintain current densities (J) of  $-10 \text{ mA} \cdot \text{cm}^{-2}$  in a 20%, compared to the pristine CoNHs (p/CoNHs). This is corroborated by the decreased charge transfer resistance from 4.4  $\Omega$  to 2.5 Ω for p/CoNHs and the optimized GO/CoNHs, respectively. Furthermore, the CoNHs display outstanding electrochemical long-term stability, for over 42 h. Structural characterization of the as-prepared CoNHs indicate they are composed of Co<sub>3</sub>O<sub>4</sub> nanoparticles (size ~10nm) conformed into one-dimensional nanoribbons. During continuous operation, the CoNHs selfregenerate in-situ assemble and into nanosheets leading to a formation of a

mixture of cobalt sulfides (Co<sub>3</sub>S<sub>4</sub> and CoS<sub>2</sub>). Moreover, integration of the as-prepared CoNHs in a quantum-dot (QD) based PEC cell and an alkaline electrolyzer (1M KOH) demonstrate the generality and viability of these alternative electrodes toward active and solar-driven fuel generation.

### References

- Tachibana, Y.; Vayssieres, L.; Durrant, J. R., Nat. Photonics 2012, 6 (8), 511-518.
- [2] Navarro-Pardo, F.;Zhao, H. G.; Wang,
  Z. M.; Rosei, F., Acc. Chem. Res. 2018, 51 (3).

#### Figures



**Figure 1:** Nyquist plots obtained at the HER potential (-450 mV vs RHE) (e) Long-term stability measurements of the CoNHs to maintain J= -10 mA·cm<sup>-2</sup> and performance degradation of the platinum electrode at different J.Scheme showing the (c) in-situ rebuilding of Co-nanoribbons into nanosheets and (d)QD-based photoelectrochemical generation of H<sub>2</sub>.

## Graphene2018