Ballistic thermal transport in two-dimensional MoSe\textsubscript{2} lattices

Nicolás Morell1
Slaven Tepsic1, Antoine Reserbat-Plantey1, Andrea Cepellotti2, Marco Manca3, Andreas Isacsson4, Xavier Marie3, Francesco Mauri5, Adrian Bachtold1.

1ICFO-The institute of photonic sciences, Av. Carl Friedrich Gauss, 3, Castelldefels (Barcelona), Spain
2University of California at Berkeley, LeConte Hall 366, Berkeley (California), USA.
3INSA, 135 Avenue de Rangueil, Toulouse, France
4Chalmers University of Technology, Gothenburg, Sweden
5Università di Roma La Sapienza, Pzzle Aldo Moro 5, Roma, Italy

nicolas.morell@icfo.es

Abstract

Greek letters, sub- and superscripts should be formatted as such. The conduction of heat in two-dimensional lattices features striking phenomena that have attracted considerable interest from a basic science point of view and for technological applications. The thermal conductance of monolayer materials have been extensively studied with Raman and electrical measurements. However, the thermal transport properties of monolayers remain highly debated. Here, I will discuss a new method to study thermal transport in two-dimensions based on opto-mechanical measurements. These measurements are possible because suspended MoSe\textsubscript{2} monolayers form mechanical resonators that feature high quality factors and can be probed with low laser power [1]. We measure both the thermal conduction Fig.1 and the heat capacity Fig.2 of suspended MoSe\textsubscript{2} monolayers. These measurements reveal ballistic transport of heat when lowering temperature. The new measurement method opens avenues in thermal transport of low-dimensional systems.

References

Figures

Figure 1: Thermal conductivity versus temperature of Single layer MoSe\textsubscript{2}

Figure 2: Heat capacity versus temperature of Single layer MoSe\textsubscript{2}