Artur M. Pinto

Arapov K., Bârsan O., de With G., Friedrich H.

Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

a.d.moreira.pinto@tue.nl

Low-cost high-throughput printing of solution processed electronics is a rapidly expanding field that already encompasses many large-scale applications such as rollto-roll printed solar cells, including current collecting grids, displays, and radio frequency identification (RFID) devices. Here, solution-processed graphene holds printed for considerable promise electronics as it is widely available, inexpensive, flexible, and most importantly, highly conductive. [1]

For flexible electronic devices, e.g., organic photovoltaics, a sheet resistance < 10 Ω/\Box mil is required, while for printed RFID antennas, one needs a few Ω/\Box mil. [2]

Two graphene ink formulations with PVP (Nvinylpyrrolidone) or PU (poly(urethane)) as a binder were produced by high-shear mixing of expanded graphite (EG) (52.5 mg mL⁻¹) in appropriate solvents, followed by gelation through solvent exchange. [1] Several EG : binder ratios were tested, and the formulations which resulted in lower sheet resistances selected, namely EG 1:2 PVP, and EG 2 : 3 PU based formulations.

Electrical performance was tested by production of thin (< 13 μ m) films at the surface of polyimide substrates. These films presented sheet resistance values around 8 and 23 Ω/\Box mil, respectively for PVP or PU formulations.

Performing thermal annealing at 350 °C for 30 min resulted in a significant drop in sheet resistance to around 2 Ω/\Box mil, while no considerable changes were observed in both conductors thickness.

When compression rolling was performed, thickness decreased to values under 4 µm,

as a tile-like dense graphene stacking was formed, assuring low sheet resistance results, below 1 Ω/\Box mil (Figure 1).

For applications in which thermosensitive substrates are required, thermal annealing temperature is limited. Therefore, the effect of performing annealing at temperatures lower than 350 °C was studied. It was observed that when using longer thermal annealing times (up to 24h) at temperatures as low as 200 °C, sheet resistance remains below 1 Ω/\Box mil, after the compression rolling process.

These values can be compared with those reported from Karagiannidis et al. [2], which produced analogous inks using carboxymethylcellulose as a binder, obtaining sheet resistances of 2 Ω/\Box mil after thermal annealing at 300 °C for 40 min.

References

Figures

- [1] K. Arapov, H. Friedrich et al., Adv. Funct. Mater 26 (2016) 586
- [2] P.G. Karagiannidis, A.C. Ferrari et al., ACSnano 11 (2017) 2742

No treatment $t = 12.3 (\pm 3.3) \mu m$ $R_{s} = 7.7 (\pm 1.0) \Omega \square mil$		Thermal annealing (350° C)		Thermal annealing Compression rolling $t = 2.7 (\pm 0.4) \mu m$ $R = 0.51 (\pm 0.13) Q/m mil$	
Binder	Annealing T	Dry thickness / µm		Resistance	(Ω/□ mil)
Diffact	°C	Avr	SD	Avr (n=3)	SD
	200	6	0	0.96	0.07
PVP	250	4	1.7	0.72	0.02
	350	3	0.4	0.51	0.13
PU	200	4	0	0.93	0.11
	250	2	0	0.24	0.02
	350	2	0.3	0.28	0.09

Figure 1: Representative scanning electron microscopy images of PVP-based graphene ink films. Effect of post-treatment (compression rolling and thermal annealing) on conductors thickness and sheet resistance.