Large Scale Pseudomagnetic Field on Graphene

Kian Ping Loh
Yan Peng Liu, J. N. B. Rodrigues, Adam Shaffique, Antonio Castro-Neto, Jiong Lu

Centre for Advanced 2D Materials and Department of Chemistry, National University of Singapore
chmlohkp@nus.edu.sg

Abstract
Spatially tailored pseudo-magnetic fields (PMF) can be potentially used to achieve quantized conductance and the valley hall effect in graphene, but this remains the realm of theory because at a practical level, it is highly challenging to create the specific strain texture that can generate a uniform PMF over a large area. [1,2]. We report a strategy to engineer large scale pseudomagnetic field (PMF) on graphene by shear-straining it on a hetero-substrate. We show that the PMF can be tuned in terms of strength and spatial distribution by rotation angle of graphene on a hetero-substrate. Importantly, our work suggests that interfacing graphene with substrates that are mismatched in terms of symmetry and crystal lattice, allied with anisotropic van der Waals interactions, provide a strategy to generate non-uniform strain texture on graphene that is intertwined with PMF. We further show that electron-phonon coupling between graphene and a hetero-substrate can be exploited to create giant magnetoresistance effects [3].

References

Figures
Figure 1: STM images and strain mapping of a hexagonal GNB. a, STM image of a hexagonal GNB. b, A histogram of experimentally-determined local strains along the dashed-line in a and the corresponding pseudo-magnetic field derived from the energy levels in dI/dV spectra shown in e, c. Magnified view of the area marked by the square in a with its corresponding strain map shown in d. e, Sequence of five dI/dV spectra (T ~ 100 K, modulation voltage = 20 mV) taken at A-E points.

Figure 2: Schematic evolution of the spatially alternating distribution of PMFs as function of the external magnetic field strength.