k-space indirect interlayer excitons in MoS₂/WSe₂ van der Waals heterostructures

Jens Kunstmann¹, Fabian Mooshammer,² Philipp Nagler,² Andrey Chaves,^{3,4} Frederick Stein,¹ Nicola Paradiso,² Gerd Plechinger,² Christoph Strunk,² Christian Schüller,² Gotthard Seifert,¹ David R. Reichman,⁴ Tobias Korn²

- ¹ TU Dresden, 01062 Dresden, Germany ² University of Regensburg, 93040 Regensburg, Germany
- ³ Universidade Federal do Ceara, Ceara, Brazil ⁴ Columbia University, New York City, USA

jens.kunstmann@tu-dresden.de

heterobilayers transition In of metal dichalcogenides (TMDCs) a new type of exciton emerges, where electron and hole are spatially separated. These interlayer excitons allow exploration of many-body quantum phenomena and are ideally suited for valleytronic applications. Mostly, a basic model of fully spatially-separated electron and hole stemming from the K valleys of the monolayer Brillouin zones is applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first principle calculations to expand the concept of interlayer excitons. We identify а partially charge-separated electron-hole MoS₂/WSe₂ pair in heterostructures residing at the Γ and Kvalleys. We control the emission energy of this new type of k-space indirect, yet strongly-bound exciton by variation of the relative twist angle (see Figure). These findings represent a crucial step towards the understanding and control of excitonic effects in TMDC heterostructures and devices.

References

[1] Kunstmann et al. (2018), submitted.

Figure: (a) Optical micrograph of a sample with a twist angle of 58.7° . Monolayer and heterobilayer (HB) regions are indicated. **(b)** Interlayer exciton (ILE) energies and calculated transition energies for HB with different twist angles. The Γ -K and K-K values are calculated with density functional theory. The trend of Γ -K is in quantitative agreement with the experiment.