High performance large-scale graphene pure spin circuits

M. Venkata Kamalakar
I. G. Serrano, Örjan Vallin, Olof Karis, Dibya Phuyal
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
Venkata.mutta@physics.uu.se

Due to its extraordinary electronic properties, graphene brought new impetus for planar spintronic circuits. Graphene is the best medium for spin-polarized electron transport, with spin transmission capability up to tens of microns at room temperature1,2. Recent demonstrations have shown that it is possible to obtain large diffusion lengths of the order of tens of microns using high mobility schemes that employ graphene-hexagonal boron nitride heterostructures3,4. While such structures have been realized in small-sized graphene crystals, there remains also a significant spread in the reported values and observations. For making systematic investigations or for practical applications, it is important to obtain high-performance spin propagation in wafer-scale graphene. Here, we unveil a demonstration to obtain spin diffusion lengths beyond 10 μm, in specially fabricated large-scale chemical vapor deposited graphene circuits3, that display very high spin diffusion up to 20 times larger than conventional CVD graphene devices. This new large scale high performance system holds potential to emerge as a universal platform for future scientific and technological advances in graphene spin based devices.

References

5. I. G. Serrano et al. (under review)