Aspects Behind the Formation of oxo-Functionalized Graphene and Thereout Derived Functionalized Graphene Derivatives

Christian E. Halbig
S. Seiler, T. J. Nacken, S. Wawra, R. Lasch, J. Krüll, A. Pirzer, O. Martin, Dr. F. Hauke, Prof. Dr. A. Hirsch, Prof. Dr. M. Heinrich, Prof. Dr. W. Peukert, Prof. Dr. B. Meyer, Prof. Dr. S. Eigler

(1) Institute of Chemistry and Biochemistry, FU Berlin, Takustraße 3, 14195 Berlin
(2) Department of Chemistry and Pharmacy, FAU Erlangen-Nürnberg, (a) Nägelsbachstraße 25, 91052 Erlangen / (b) Nikolaus-Fiebiger-Straße 10, 91058 Erlangen / (c) Dr.-Mack-Straße 81, 90762 Fürth
(3) Institute of Particle Technology (LFG), FAU Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen

Christian.Halbig@fu-berlin.de
Siegfried.Eigler@fu-berlin.de

Oxo functionalized graphene (oxo-G) is a water dispersible 2D-nanomaterial can act as a molecule carrier system or be used as a cheap precursor for conductive graphene layers and is hence of high interest for technical and medical applications.\[^1\]

Up to now, top-down synthesis without additional lattice defects and in a defined flake size distribution remains challenging as well as the functionalization of the intact surface. By applying mild synthesis conditions at temperatures below 5 °C, it is possible to obtain of graphene with densities of defects down to 0.4%, as determined by statistical Raman spectroscopy (SRS) in large yields.\[^2\]

At this low rate of defects, the surface chemistry can be precisely studied, avoiding major contributions by functionalization of defect sites and edges.

Here, we present a study elucidating the mechanism behind the formation of oxo-G, as evidenced by experiments and density functional theory calculations (DFT),\[^3\] and show two novel routes towards the synthesis of functionalized graphene derivatives after reduction of oxo-G to graphene.

Furthermore, we qualitatively investigated the influence of the post-processing of oxo-G by ultrasound at defined parameters, which allows the controlled size reduction down to the nanoscale and thus, the usage of the novel materials for biological applications (Figure 2).\[^4\]

References


Figures

![Figure 1: a) Steps of wet chemical transformation of graphite to obtain highly intact graphene flakes. b) H⁺ and e⁻ transport while graphite is transformed to graphite sulfate.](image)

Graphene2018
June 26-29, 2018 Dresden (Germany)
Figure 2: Influence of external stress like ultrasound leads to particle size reduction.