rGO-nanocomposite compounding for use in fused deposition modelling

Siamak Eqtesadi¹

Azadeh Motealleh¹, Rune Wendellbo¹, Marco Scatto², Paolo Scopece², Alessandro Patelli², Michele Sisani³, Maria Bastianini ³, Hugo Perera⁴ Lorenzo Moroni⁵

¹Abalonyx AS, Forskningsveien 1, 0373 Oslo, Norway

²Nadir Srl, Via Torino 155b, c/o Università Cà Foscari Venezia, I-30172 Mestre (VE), Italy

³Prolabin & Tefarm, Via dell'Acciaio, 9, 06134 Perugia, Italy

⁴Universidad de Extremadura, Escuela de Ingenierías Industriales, Badajoz, Spain

⁵Maastricht University, Universiteitsingel 40, 6229ER Maastricht, the Netherlands

se@abalonyx.no

Abstract

Polymers are widely used as biomaterials for the fabrication of medical device and tissue-engineering scaffolds. However, most of polymers may not completely meet the requirements for some applications due to their insufficient mechanical and biological The incorporation properties. of an inorganic phase into the polymeric matrix ideally improve not only can the mechanical properties of the material, but also its bioactivity [1]. Graphene derivatives can be used as a promising additive in polvmer matrices to their enhance bioactivity and mechanical properties.

In addition to selecting the proper materials for scaffolds, choosing also the right fabrication method could be a challenge to meet the requirements needed for an ideal scaffold.

Additive manufacturing technologies, such Fused Deposition Modelling (FDM),, as opened new doors for fabricating 3D composites with complex shapes. The incorporation of graphene derivatives such as graphne oxide (GO) and reduced graphene oxide (rGO) is not an easy task. Mixing GO in a molten polymer is problematic due to thermal reduction of GO at high temperatures, which results in the formation of carbonaceous gases. On the other hand rGO is not easily dispersible due to its aggregated nature.

We solved these aforementioned problems through two different approaches.

This work reports the activities of Abalonyx in an EU project entitled "FAST, H2020-NMP-PILOTS-2015", under grant agreement n° 685825.

References

 T. Kasuga, H. Maeda, G. Jell, I. Notingher, and L. Hench, "Preparation of vaterite/poly(lactic acid) composites with excellent apatiteforming ability," Bioceram. 17, vol. 17, pp. 449–452, 2005.

Figures

Figure 1: SEM micrographs of filaments with 10 wt.% rGO.

Figure 2: Evolution of compressive strength resulting from addition of different nanofillers.