Parameter Controls for Enhanced Peak-to-Valley Current Ratio in MoS₂/MoTe₂ van der Waals Heterostructure

Ngoc Thanh Duong

Seung Ho Bang, Dang Xuan Dang, Dong Hoon Kuem, Mun Seok Jeong*, and Seong Chu Lim*

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

*mjeong@skku.edu

Abstract

The I_{ds}-V_{ds} properties of a van der Waals cross-junction of a few layers MoS₂/MoTe₂ were investigated, and the physical device parameter was altered in order to transform the conduction mechanism of our devices from thermionic to interband tunneling. Lowering the contact resistance between the metal and channel materials, by changing the electrode metals from Au to Pd and Ti, alone did not give rise to the carrier conduction through the heterointerband tunneling between MoTe₂ and MoS₂. In addition to the reduction in contact resistance, the chemical doping of MoS₂ using BV achieves hetero-interband tunneling between MoTe₂ and MoS₂, which probably narrows the depletion layer by degenerating MoS₂. The peak-to-valley ratio of the tunneling current of the BVdoped heterostructure of MoS₂/MoTe₂ is about 4.8, which is comparable to that of the commercially available Si tunneling diode.

References

- [1] Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T. Nano Lett. 2016, 16 (2), 1359–1366.
- [2] Esaki, L., Physical Review, 1958, 603-604
- [3] Ng, K. K. In Complete Guide to Semiconductor Devices; 2009; pp 11– 23
- [4] Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. ACS Nano 2017, 11 (2), 1588–1596.

MoTe₂ Interband Tunneling MoS₂

Figure 1: 3D-schematic image of MoS₂/MoTe₂ heterostructure fabricated on Si/SiO₂ (300 nm) with Interband Tunneling current.

Si/SiO₂ (300 nm)

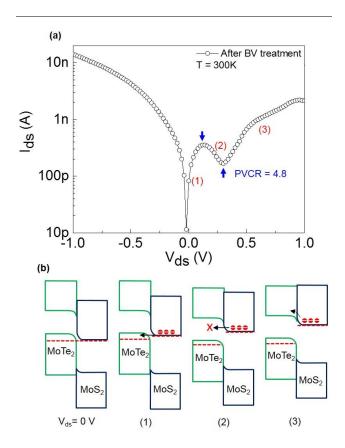


Figure 2: (a) I_{ds} - V_{ds} of MoS₂/MoTe₂ heterostructure. The presence of Negative Differential Resistance (NDR) is attributed to the Interband tunnelling phenomenon. (b) Schematics of the band modulation of BV-doped MoS₂/MoTe₂ heterostructure as a function of V_{ds} .