Bottom-up fabrication of graphene nanoribbons: From molecules to devices

Gabriela Borin Barin¹

Juan Pablo Llinas², Liangbo Liang³, Maria El Abassi¹, Jan Overbeck¹, Matthieu Paillet⁴, Klaus Müllen⁵, Michel Calame¹ Pascal Ruffieux¹, Vincent Meunier⁶, Jeffrey Bokor², Roman Fasel¹

¹Empa, Dübendorf, Switzerland

²Dept of Electrical Eng. and Comp. Sciences, UC Berkeley, USA

³Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, USA

⁴Lab Charles Coulomb (L2C), CNRS-Universite de Montpellier, Montpellier, France

⁵Max Planck Institute for Polymer Research, Mainz, Germany

⁶Dep of Physics, Appl Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, USA

gabriela.borin-barin@empa.ch

Atomically precise graphene nanoribbons (GNRs) exhibit a sizeable bandgap, which is inversely proportional to their width¹, and thus potentially overcome many of the limitations of graphene in electronic device applications. Despite their exceptional properties, significant challenges remain for GNR fabrication, processing and characterization. Bottom-up synthesis of graphene nanoribbons is most commonly performed under ultra-high vacuum conditions, which is one of the bottlenecks in the further technological advancement of this material. Additionally, little is known about the stability of ultra-narrow GNRs under ambient conditions or during device processing. In this work we focused on 9atom wide armchair GNRs (9-AGNR) grown under high to ultrahigh vacuum conditions on 200 nm Au(111)/mica substrate and vicinal Au(111212) crystal. High resolution STM images show 9-AGNRs with an average length of 50 nm. The GNRs were transferred from the Au growth surface to SiO₂/Si using two transfer approaches. For transferring GNRs from vicinal crystal Au(111212) an electrochemical delamination method was applied, which allowed the GNRs to

preserve their structure, overall quality and orientation upon transfer. Detailed characterization of GNRs transferred by this method will be addressed. GNRs from Au/mica substrates were transferred using a membrane-free method. Raman spectra indicate no significant degradation of GNR quality, reveal a homogeneous GNR distribution on the target surface and also showed GNRs had remarkably stability under ambient conditions tracked over a 2vear period. Multi-wavelength Raman studies (785 - 457 nm) reveal the absence of dispersive behavior for the G, D and RBLM modes. The comparison between experimental and DFT-based Raman simulations will be discussed. Finally, we report the fabrication of short channel (Lch ~20 nm) GNR-FET devices using 9-AGNRs as channel material (predicted band gap of 2.1eV)². We demonstrate FETs with high oncurrent $I_{on} > 1 \mu A$ at $V_d = -1 V$ and high I_{on}/I_{off} ratios of ~10⁵. In a next step, GNR-FET devices were produced using graphene electrodes, with a channel length of 1-5nm. A performance of $I_{on} > 6\mu A$ at $V_d = 0.1 V$ and high I_{on}/I_{off} ratios of ~10⁴ was observed.

References

[1] J. Cai *et al.,* Nature, **466**, 2010.

[2] J.P. Llinás et al. Nature Comm, 8. 2017

Figures

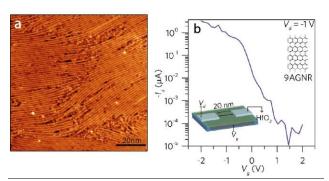


Figure 1: . a) High resolution STM of 9-AGNRs on Au growth substrate, b) $I_d\text{-}V_g$ curve of 9-AGNR-FET devices