

Deterministic and Scalable Growth of Electrically Self-Contacted 2D Materials-Based Devices

Eric Stinaff

Department of Physics and Astronomy, Ohio University and Nanoscale and Quantum Phenomena Institute Athens, OH 45701

ONQPI 2D Materials-Based Devices

Mechanical Exfoliation

http://www.planarmaterials.com/store/p144/Hi gh_mobility_graphene_heterostructures.html

Nanocarbon group, DTU Nanotech, Technical University of Denmark

Challenges

- Variability
- Reproducibility
- Contacting
- Scalability

ONQPI 2D Materials-Based Devices

Scientific reports 3 (2013): 1866.

Reverse the process

Start with device structure

Grow material

1DG

M. H. D. Guimaraes, et al, ACS Nano 10, 6392 (2016)

As-grown 2D Devices

Deterministic

NQPI

- Scalable
- Compatible with existing silicon processing
- Provides concurrent, asgrown, electrical contacts
- Heterostructures
- Direct on-chip optics?
- Doping?
- Complex geometries?

ONQPI

MoS₂ on Mo 4-probe

UNIVERSITY

DOI: 10.1002/admi.201600599 or arXiv:1611.03887

ONQPI Continuous mono MoS₂ between the patterns

DOI: 10.1002/admi.201600599 or arXiv:1611.03887

ONQPI

Heterostructure Growth

UNIVERSITY

MoS₂/WS₂ vertical heterostructures grown on tungsten wires

Khadka S., et al. Advanced Materials Interfaces (2016)**DOI:**10.1002/admi.201600599 or arXiv:1611.03887

Heterostructure Growth

Combinations of metal pattern and oxide precursor may lead to straightforward production of complex device structures

Characterization of As-grown Device

a) Raman Mapping

Khadka S., et al. Advanced Materials Interfaces (2016) DOI: 10.1002/admi.201600599 arXiv:1611.03887 or

QPI

ONQPI Experimental Set Up for Electrical Measurements

a.

3D scehmatic of the asgrown MoS₂ based MSM PD

b. **Cross-sectional representation of** PD with the electrical contacts used for the measurements of **Photocurrent and Photo** responsivity 532 nm Mo Mo (D) **(S)** SiO₂ Si V_{DS} V_{GS}

ONOPI Photocurrent and Photoresponsivity

Photocurrent = *I*_{*Illuminated*} – *I*_{*dark*}(A)

Photoresponsivity (R) = $\frac{Photocurrent}{Incident Power}$ (A/W)

Photocurrent Dynamics

JQPI

ONQPI Bias dependent Spatial Photocurrent

Optical Image

Photocurrent Mapping at V_{DS} =0V

Line profile of Photocurrent across green line at $V_{DS}=\pm 0.5$, 0V

ONQPI Comparison with previously reported MoS₂ PDs.

Ref: Buscema, Michele, et al. Chemical Society Reviews 44.11 (2015): 3691-3718.

ONQPI Summary of the Presentation

ONQPI

As-grown 2D Devices

- Deterministic
- Scalable
- Compatible with existing silicon processing
- Provides concurrent, asgrown, electrical contacts
- Heterostructures
- Direct on-chip optics?
- Doping?
- Complex geometries?

Nanophotonics & Spectroscopy Group

Shrouq Aleithan (Ph.D. Candidate) Sudiksha Khadka (Ph.D. Candidate) Ruhi Thorat (Ph.D. Candidate) Thusan Wickramasinghe (Ph.D. Candidate)

Undergraduates Miles Lindquist Helen Cothrel Christopher Wolfe

CMSS

fatter and Surface Science Program at Ohio Unit

