Superlensing with twisted bilayer graphene

Tobias Stauber and Heinerich Kohler
Instituto de Ciencia de Materiales de Madrid, CSIC

Graphene 2017 - Barcelona, 29/03/2017
Introduction
Planar superlenses reconstitute the near-field of the source by virtue of resonant surface waves.

N. Fang et al., Science 308, 534 (2005)
Plasmons in double layer systems, e.g., Topological Insulators

Optical Mode

\[\omega_+^2 = \frac{\alpha v_F^2 (k^T_F + k^B_F)}{(\varepsilon_T + \varepsilon_B)} q \]

Acoustic Mode

\[\omega_-^2 = \frac{\alpha v_F^2 k^T_F k^B_F}{\varepsilon_{TI} (k^T_F + k^B_F)} q^2 \]

Exponential amplification of evanescent modes

Exponential amplification of evanescent modes for $R=0$.

\[T \propto e^{2qd} \]

Analogy to Pendry's perfect lens

WANTED:

Plasmonic mode with constant energy dispersion

Graphene 2017
Barcelona, 29th of March 2017

Tobias Stauber
Exponential amplification of evanescent modes

Exponential amplification for all modes at constant energy
Continuity equation and linear response yields:

\[\omega^2 = \chi(\omega, q) \frac{e^2 q}{2\varepsilon_0 \kappa} \]

Approximate current response by Drude weight \(D \):

\[D = e^2 \chi(\omega \rightarrow 0, q = 0) \]

Plasmon dispersion in local approximation for 2D systems:

\[\omega_p = \sqrt{\frac{D}{2\varepsilon_0 \kappa}} q \]

Do plasmons exist in a neutral system (D=0)

EELS of Graphene on Ir

In pure Dirac systems, there are no interband plasmons because the charge response is always negative.

\[\chi_\rho(q, \omega) = -\frac{1}{4\hbar} \frac{q^2}{\sqrt{(v_F q)^2 - \omega^2}} < 0 \]

But there can be an enhanced charge response as seen in the maximum of the loss function.

\[S(q, \omega) = -\text{Im} \frac{1}{1 - v_q \chi_\rho(q, \omega)} \]

\[\omega^2 \neq \chi(q, \omega) \frac{e^2 q}{2 \varepsilon_0 \kappa} \]

Are interband plasmons possible?

BHZ-model for fermions in Hg(Cd)Te:

\[H = \mathbf{d}_k \cdot \mathbf{\sigma} \]

\[\mathbf{d}_k = (v_F k_x, v_F k_y, M - B k^2) \]

Mixture between Dirac and Schrödinger electrons yields plasmons at zero doping

Twisted bilayer graphene
Twisted bilayer graphene
Brillouin zone for twisted bilayer graphene

Two Dirac cones

Twist angle parameterized by i

$$E_n(k)/t = \begin{cases} 0 & \text{if } n \text{ is even} \\ \cos \theta_i = 1 - \frac{1}{2A_i} & \text{if } n \text{ is odd} \end{cases}$$

$$A_i = 3i^2 + 3i + 1$$
Renormalization of the Fermi velocity:

\[
v = v_F \left(1 - 9 \frac{t_\perp}{v_F \Delta K} \right)
\]

Appearance of magic angles for i>31

Merging of the pseudo-spin texture

Crossover from large angle regime to low angle regime

M. Zhu et al., 2D Mater. 4, 011013 (2017)
Localized states around AA-stacked islands

Crossover from extended to localized states

Local density of first six conduction bands:

Plasmons in twisted bilayer graphene
Local optical response of twisted bilayer graphene

Plasmons in local approximation

Incoming momentum couples to reciprocal lattice vectors

\[V_{\text{ext}}(r) = v_q e^{iqr} \]

\[\delta \rho(r) = \sum_G \delta \rho(q, G)e^{i(q+G)r} \]
Introduction

Twisted bilayer graphene

Charge response with local field effects

Incoming momentum couples to reciprocal lattice vectors

\[
V_{\text{ext}}(r) = v_q e^{i q \cdot r}
\]

\[
\delta \rho(r) = \sum_G \delta \rho(q,G) e^{i(q+G) \cdot r}
\]

Charge susceptibility

\[
\chi_{G,G'}(q,\omega) = \frac{g_s}{(2\pi)^2} \int_{1.BZ} d^2 k \sum_{n,m;\kappa=\pm} f_{G,G'}^{n,m;\kappa}(k,q) \left[\frac{n_F(E_k^s) - n_F(E_{k+q}^s')}{E_k^s - E_{k+q}^s' + \hbar \omega + i\delta} \right]
\]

Band overlap including local field effects

\[
f_{G,G'}^{n,m;\kappa}(k,q) = \langle k,n;\kappa | e^{-i(q+G) \cdot \hat{r}} | k + q,m;\kappa \rangle \langle k + q,m;\kappa | e^{i(q+G') \cdot \hat{r}} | k,n;\kappa \rangle
\]
Crossover from linear to quadratic behavior

\[a t_0 \text{Re} \chi(q, \omega=0) \]

T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016)
Dynamical response of twisted bilayer graphene

Crossover at $i=15-20$:

$q_a=0.02$

T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016)
Dynamical response of twisted bilayer graphene

Crossover at $i=15-20$:

$q_a=0.02$

T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016)
Loss function for $i=25$

Quasi-flat plasmonic bands for $\theta \approx 1.6^\circ$:

$\tilde{\eta} \omega / t_0$

qa

TWISTED BILAYER GRAPHENE:

Plasmonic mode with constant energy dispersion

T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016)
1. For small enough twist angle, we find a novel plasmonic resonance of almost constant energy at zero doping. This mode can be tuned and quenched/enhanced by changing the twist angle and chemical potential, respectively.

2. The novel mode can be characterised as collective excitonic in-phase oscillations in a periodic, but quasi-confining potential surrounding the AA-stacked regions.

3. Twisted bilayer graphene resembles a new metamaterial with extraordinary properties in the THz to mid-infrared region leading to enhanced absorption and exponential amplification at constant energy reminiscent to Pendry's perfect lens, but without the need of left-handed materials.

Thank you for your attention!