Berry opto-electronics: new tools for engineering lightmatter interaction

Justin Song

Graphene 2017, Barcelona

Institute of High Performance Computing, A*STAR & Division of Physics and Applied Physics, Nanyang Technological University (Singapore)

> Funding: NATIONAL RESEARCH FOUNDATION

Plan

Part I.

Giant Hall photoconductivity

gapped Dirac materials with a narrow gap yield Hall photoconductivity order ~ e^2/h ; access to new "Berry" transport regime

JS, Kats, Nano Letters (2016)

if we have time:

Part II.

Anomalous plasmons

(i) electron interactions + Berry curvature = new collective modes ("Berry Plasmons")

(ii) unusual Fermi-arc plasmons in Weyl semimetals

JS, Rudner, PNAS (2016)

JS, Rudner, arXiv (2017)

Solid state 101: "Vanilla" electrons

Litany of free electron properties:

- Fermi-surface + thermody. properties,
- Drude-type transport [e.g., electrical conductivity], and dynamical response
- Hall resistance,

free-electron eq. of motion:

$$\dot{\mathbf{p}} = e\mathbf{v} \times \mathbf{B} + e\mathbf{E}$$

E pushes Fermi surface out of equilibrium

cyclotron motion

drifting cyclotron orbits

Solid state 101: Hall effect

Quantum coloring: Quantum Hall effect

wavefunction matters: QH wavefunction gives qualitatively different behavior

Figure adapted from nobelprize.org

Quantum Hall systems possess rich phenomenology

Kim and Shepard Groups, Nature Physics (2011), lots of others as well

Can we use crystal fields instead?

Quasiparticles in a crystal

Energy bands in a crystal; depends on k

Wavefunction matters: **Berry curvature**

Energy bands in a crystal; depends on k

Emergent quantum mechanical property:

Berry curvature (self-rotation of wavepackets)

Electron wavepacket traveling through certain special crystals

(Self-) Rotation enables transverse motion

Magnus effect:

Drifting cyclotron motion:

Anomalous velocity and Berry curvature $\Omega(\mathbf{p})$

Electron wavepacket traveling through certain special crystals

for extended discussion see Xiao, Chang, Niu RMP (2010)

Zero-field quantum Hall effect

VOLUME 61, NUMBER 18

PHYSICAL REVIEW LETTERS

31 OCTOBER 1988

topology

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance σ^{xy} in the *absence* of an external magnetic field. Massless fermions without spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity anomaly" of (2+1)-dimensional field theories.

tight-binding "graphene" type model with complex second neighbor hopping

FIG. 1. The honeycomb-net model ("2D graphite") showing nearest-neighbor bonds (solid lines) and second-neighbor bonds (dashed lines). Open and solid points, respectively, mark the Aand B sublattice sites. The Wigner-Seitz unit cell is conveniently centered on the point of sixfold rotation symmetry (marked "•") and is then bounded by the hexagon of nearestneighbor bonds. Arrows on second-neighbor bonds mark the directions of positive phase hopping in the state with broken time-reversal invariance.

 $3\sqrt{3}$ $\frac{M}{t_2} = 0$ $-3\sqrt{3}$ $-\pi = 0$ $\nu = 0$ $\nu = +1$ $\nu = 0$ $\pi = 0$

FIG. 2. Phase diagram of the spinless electron model with $|t_2/t_1| < \frac{1}{3}$. Zero-field quantum Hall effect phases ($v = \pm 1$, where $\sigma^{xy} = ve^2/h$) occur if $|M/t_2| < 3\sqrt{3} |\sin\phi|$. This figure assumes that t_2 is positive; if it is negative, v changes sign. At the phase boundaries separating the anomalous and normal (v=0) semiconductor phases, the low-energy excitations of the model simulate undoubled massless chiral relativistic fermions.

summing up Berry curvature over BZ

Realizing Haldane model and imaging Berry curvature

Jotzu, ..., Esslinger, Nature (2014)

Electronic chirality without magnetic field

Topological materials: novel electronic + opto-electronics

Xu et al, Science (2015), [Hasan group, and many others]

Topological materials: novel electronic + opto-electronics

Search for new "topological" flavored responses in more readily available materials?

Hall photoconductivity in gapped Dirac materials

Circularly polarized light absorption in MoS_2

K'

Right Handed

Hall effect at zero magnetic field

/_=0V

0.4

KF Mak, K McGill, JW Park, PL McEuen, Science (2014)

K

Left Handed

Hall photoconductivity in gapped Dirac materials

 $\sigma_{xx} \gg \sigma_{xy}$

Can we achieve Hall regime in gapped Dirac materials?

Plan

Part I.

Giant Hall photoconductivity

gapped Dirac materials with a <u>narrow</u> gap yield Hall photoconductivity order ~ e^2/h ; access to "Berry" transport regime

In collaboration with:

Mikhail Kats (Wisconsin)

JS, Kats, Nano Letters (2016)

Narrow gapped Dirac materials (GDM)

G/h-BN heterostructures

narrow gaps: $\Delta \approx 5 - 30 \,\mathrm{meV}$

Dual-gated Bilayer graphene

Tunable gaps from 0 up to 100-200 meV

Berry curvature and Valley Hall effect observed

G/hBN: Gorbachev, JS, et al, Science (2014), Dual-gated bilayer graphene: Shimazaki, et al Nature Physics (2015), Sui, et al Nature Physics (2015)

Giant Hall photoconductivity in <u>narrow</u> gap GDMs

Intrinsic Hall photoconductivity:

JS, Kats, Nano Letters (2016)

Giant Hall photoconductivity in <u>narrow</u> gap GDMs

Giant Hall photoconductivity in <u>narrow</u> gap GDMs

JS, Kats, Nano Letters (2016)

Intuitive explanation: pseudo-spin and velocity

$$\mathbf{v}_{\mathbf{p}} = \langle \psi(\mathbf{p}) | \boldsymbol{\sigma} | \psi(\mathbf{p}) \rangle$$

JS, Kats, Nano Letters (2016)

all on B site

Intuitive explanation: pseudo-spin and velocity

all on B site

Enhancement of valley imbalance rate

Fermi's golden rule (valley selective absorption rate)

$$W_{K(K')} = \frac{2\pi}{\hbar} \sum_{\mathbf{k}} |M_{\mathbf{k}}^{K(K')}|^2 \delta(\varepsilon_{\mathbf{k}} - \hbar\omega/2)$$

Valley population imbalance rate:

Left Handed

How large? Accessing Hall regime $\sigma_{xy} \gg \sigma_{xx}$

longitudinal motion:

Signatures of the Hall regime: $\sigma_{xy} \gg \sigma_{xx}$

Magneto-transport: Lorentz force impedes longitudinal motion

$$\dot{\boldsymbol{x}} = rac{darepsilon}{d\boldsymbol{p}}$$

 $\dot{\boldsymbol{p}} = -rac{dV}{d\boldsymbol{x}} + \dot{\boldsymbol{x}} \times \boldsymbol{B}$

Signatures of the "Berry" Hall regime: $\sigma_{xy} \gg \sigma_{xx}$

Magneto-transport: Lorentz force impedes longitudinal motion

$$egin{array}{lll} \dot{m{x}} &=& rac{darepsilon}{dm{p}} \ \dot{m{p}} &=& -rac{dV}{dm{x}} + \dot{m{x}} imes m{B} \end{array}$$

"Berry transport": Berry curvature **boosts** longitudinal motion

$$\dot{\boldsymbol{x}} = rac{darepsilon}{d\boldsymbol{p}} + \dot{\boldsymbol{p}} imes \Omega$$

 $\dot{\boldsymbol{p}} = -rac{dV}{d\boldsymbol{x}}$

photo-resistivity is *suppressed* in "Berry" Hall regime

JS, Kats, Nano Letters (2016)

Anomalous two-terminal conductance

Anomalous two-terminal conductance boost

"Berry transport" in narrow GDMs

Narrow gapped Dirac materials enable *giant* Hall photoconductivity

Far larger than wide gap Dirac materials.

new characteristics; readily accessible

Hall photoconductivity can overwhelm longitudinal conductivity: **Hall regime**.

Narrow gapped Dirac materials: platform for novel "Berry" opto-electronics

In collaboration with:

Mikhail Kats (Wisconsin) Funding: NATIONAL RESEARCH FOUNDATION (Singapore)

Plan

Part I.

Giant Hall photoconductivity

gapped Dirac materials with a narrow gap yield giant Hall photoconductivity order ~ e^2/h = access to "Berry" transport regime [Hall regime]

Part II. Anomalous Plasmons

electron interactions + Berry curvature = new collective modes ("Berry Plasmons")

In collaboration with:

Mark Rudner (Copenhagen)

Interactions and Collective modes

Plasmons

Spin waves/magnons

Image from http://wikipedia.org

e.g. Plasmons in graphene

Koppens group, Nature (2013) Basov group Nature (2013)

Interactions + Berry curvature = Berry plasmons?

Chiral edge plasmons induced by Berry curvature

characteristic wavevector

 $q_0 = \kappa \mu / e^2$

Berry plasmons in a disk

Counter-clockwise (fast) mode

Linearized equation of motion:

$$\begin{pmatrix} \frac{d^2}{dt^2} + \omega_0^2 & -\omega_a \frac{d}{dt} \\ \omega_a \frac{d}{dt} & \frac{d^2}{dt^2} + \omega_0^2 \end{pmatrix} \begin{pmatrix} \{x(t)\} \\ \{y(t)\} \end{pmatrix} = 0 \qquad \omega_a = \frac{\mathcal{F}\omega_0^2 m}{n_0 \hbar}$$

Obtain two chiral modes:

$$\{\mathbf{x}(t)\}_{\pm} = \frac{|\mathbf{x}_0|}{\sqrt{2}} \begin{pmatrix} 1\\ \pm i \end{pmatrix} e^{i\omega_{\pm}t}, \quad \omega_{\pm} = \sqrt{\omega_0^2 + \frac{\omega_a^2}{4}} \pm \frac{\omega_a}{2}$$

Clockwise (slow) mode

using
$$\omega_0 \sim \omega_{2D}(q=1/d)$$
, find
$$\delta\omega \approx \frac{9\mathcal{F}}{d[\mu\mathrm{m}]} \mathrm{meV}$$

Experimental signatures: optical absorption

JS, Rudner, PNAS (2016)

Optical valley polarization enables CBPs "on demand" in *non-magnetic* materials (e.g., Gapped Dirac Materials)

JS, Rudner, PNAS (2016)

Topological materials

Topological Insulators

Surfaces of 3D TIs: Bi₂Se₃, Bi₂Te₃ Bi_xSb_{1-x},...

Topological Crystalline Insulators: Sn Te, ...

Magnetic Topological Insulators: Cr-doped BiSbTe

Hg _xCd_{1-x}Te Quantum Wells, InAs/GaSb QWs

3D Dirac/Weyl

Experimentally Observed: Cd_3As_2 , Na_3Bi , TiBiSe $TaAs_2$, ...

Type II Weyl semimetals (candidates):WTe2, MoTe2

Proposed in TI stacks; HgCdTe Stacks

Nodal-line semimetals

2D Dirac Materials

(materials that host Berry curvature)

Graphene heterostructures: G/hBN, dual-gated Bilayer graphene, ...

Transition metal dichalcogenides: MoS₂,WS₂,WSe₂, MoSe₂, MoTe₂,....

Weyl semimetals and Fermi arc surface states

topological surface states and (open) Fermi arcs e^{k_y} Fermi arc : $-k_*$

bulk Weyl nodes and bulk (closed) Fermi surface

 \mathbf{z}

Fermi arc plasmons in Weyl semimetals

with broken TRS

inter bulk/surface[fermi-arc] dynamics

 $\rightarrow \mathbf{V}_s$

 \mathbf{v}_b^z

х

 n_s

Hyperbolic plasmons

conventionally, plasmons have <u>elliptical</u> dispersions (closed) = finite wave vector magnitude

<u>Hyperbolic</u> dispersion does not close on itself (open) = sustain large wavevectors for fixed energy

Fermi arc plasmons in Weyl semimetals

JS, Rudner, arxiv (2017)

Fermi arc plasmons

characteristic of bulk "topological" Weyl carrier dynamics plasmon dispersion can be dominated by σ_H

collimated beam pitch controlled by frequency:

$$\frac{\sin^2 \theta_{\infty}}{\cos \theta_{\infty}} = -\frac{\tilde{\omega}}{\tilde{\mathcal{D}}} \Big(1 - \frac{1}{\tilde{\omega}^2} \Big),$$

$$\omega_{\pm}^{(1)} = \sqrt{\left[2\pi\sigma_H/(\kappa+1)\right]^2 + \left[\omega_{\rm pl}^{\rm surf}\right]^2} \pm \frac{2\pi\sigma_H}{(\kappa+1)},$$

large q limit: hyperbolic plasmons

small q limit: non-reciprocal discontinuity

new opto-electronics in topological materials quantum coloring: new tools, lots to be done

unusual properties of the crystal wave function (e.g., encoded in Berry curvature, chiral edge states) yield unconventional single-particle as well as interacting behavior

new opto-electronics couplings, and tools to be found in "topological" materials

