

http://www.fis.unipr.it/nanocarbon

Graphene-based electrodes for high-performance Na-ion batteries

- D. Pontiroli¹, G. Magnani¹, M. Gaboardi^{1,2}, J. C. Pramudita³, N. Sharma³,
- C. Milanese⁴, M. Riccò¹
- 1. CNL, DSMFI, Università di Parma, Parma, Italy
- 2. Rutherford Appleton Laboratory, ISIS Facility, Didcot, UK
- 3. Dalton Building, University of New South Wales, Sydney, Australia
- 4. H₂Lab, Dipartimento di Chimica, Università di Pavia, Pavia, Italy

The Energy Revolution

Smart grids

Automotive

Some drawbacks in Li-ion technology

Na-ion batteries

Na-ion batteries (SIBs) are promising for automotive and large scale grid storage applications

Advantages

- ✓ Na is more available in nature and less expensive than Li
- ✓ Li-ion technology can be partly recovered to assure rapid progress

Disadvantages

- ✓ Na+ ionic radius is larger than Li+
- Na does not intercalate in graphite and silicon, commonly used in Li systems

Graphene (TEGO) production

TEGO Characterisation

D. Pontiroli, M. Riccò et al., J. Phys. Chem. C 118, 7110 (2014) M. Gaboardi, D. Pontiroli et al, J. Mater. Chem. A 2, 1039 (2014)

- ✓ Single and few-layers graphene sheets
- ✓ High specific surface (>600m²/g)
- ✓ Presence of sp³ carbon disorder

TEGO Functionalization

Neutron spectroscopy investigation

- C. Cavallari, D. Pontiroli et al, Phys. Chem. Chem. Phys. 18, 24820 (2016)
- D. Pontiroli , M. Riccò et al., J. Phys. Chem. C 118, 7110 (2014)

TEGO Functionalization

TEGO derivatives as electrode materials

TEGO Derivatives in Li-ion batteries

- ✓ High irreversible capacity loss at the 1st cicle
- ✓ Slope suggests presence of capacitive storage effect
- High rate capability and reliability (as compared with graphite)

J. A. Pramudita, D. Pontiroli, N. Sharma et al, ChemElectroChem 2(4), 600 (2015)

TEGO Derivatives in Na-ion batteries

- ✓ Graphene allows Na intercalation and works also in Na-ion half-cells (NB: graphite DOES NOT intercalate Na!)
- ✓ Performances are similar to graphene LiBs
- ✓ No formation of crystalline region upon discharge/charge

J. A. Pramudita, D. Pontiroli, N. Sharma et al, ChemElectroChem 2(4), 600 (2015)

Ni-TEGO in LIBs and SIBs

Ni-TEGO (NiC80) in SIBs

- a) 1st discharge
- b) 1st charge
- c) after 20 cycles, charged

- ✓ Better performances of Ni-TEGO as negative electrode in Na-ion half-cells
- ✓ Capacity of 520 mAh/g after 20 cycles (at 100 mA/g) with ~97% coulombic efficiency
- ✓ SEM shows presence of small Na-rich aggregates (0.2-2 µm)

J. A. Pramudita, D. Pontiroli, N. Sharma et al, ChemElectroChem 2(4), 600 (2015)

Mechanism of Na insertion/extraction

- ✓ Na environment on and between the TEGO surface after charge/discharge cycles was investigated by means of ²³Na NMR MAS
- ✓ During 1st cycle, three mobile sites at -2, -14 and -16 ppm and one immobile site at -10 ppm are present
- ✓ During 20th cycle, three mobile sites at -2, -14 and -27 ppm and one immobile site at -10 ppm are present
- ✓ The immobile site correlates with the large irreversible loss after the 1st cycle
- ✓ The decrease of mobile sites correlates with the fade of the performances during cycling

J. A. Pramudita, D. Pontiroli, N. Sharma et al, ACS Appl. Mater. Interfaces 9 (1), 431 (2017)

The role of Ni Nanoparticles

- ✓ Ni-NPs dimensions depends on the Ni concentration as well as on the annealing time
- ✓ Ni-NPs size ranges from 4(2) to 15(4) nm and shows saturation behaviour
- ✓ Ni-NPs play a role in the Ni-TEGO electrode capacity and in the rate capability

Conclusions

- ✓ Graphene based materials enable alternatives to Li-ion batteries
- ✓ Chemical graphene (TEGO) and its derivatives (H-TEGO and Ni-TEGO) behave as **good negative electrodes for both Li- and Naion batteries**.
- ✓ Decoration of TEGO with Ni NPs clearly improves the performances in **Na-ion batteries**
- ✓ The mechanism of Na insertion/extraction in TEGO comprises
 the population of both mobile and immobile sites, the latter
 probably involved in SEI formation

Acknowledgements

✓ Carbon Nanostructures Laboratory - Parma

M. Riccò, M. Gaboardi, M. Aramini, G. Magnani

- ✓ UNSW Sydney
 - N. Sharma, J. C. Pramudita, J. A. Stride
- ✓ H₂Lab and Pavia University
 - C. Milanese, S. Sanna, P. Carretta
- ✓ Institue Laue Langevin Grenoble
 - S. Rols, C. Cavallari
- ✓ IMEM-CNR Parma, Trento
 - G. Bertoni, R. Verucchi

