

Hyperbolic cooling of graphene Zener-Klein transistors

W. Yang, S. Berthou, X. Lu, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi, K. Watanabe, G. Fève, J.M. Berroir, G. Zhang, C. Voisin, E. Baudin, and <u>B. Plaçais</u>

Noise thermometry brings new information on scattering and relaxation of graphene carriers.

Current saturation regime is investigated here

Introduction

Hyberbolic Phonon Polaritons of uniaxial hBN

Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial

S. Dai¹, Q. Ma², M. K. Liu^{1,3}, T. Andersen², Z. Fei¹, M. D. Goldflam¹, M. Wagner¹, K. Watanabe⁴, T. Taniguchi⁴, M. Thiemens⁵, F. Keilmann⁶, G. C. A. M. Janssen⁷, S-E. Zhu⁷, P. Jarillo-Herrero², M. M. Fogler¹ and D. N. Basov^{1*}

Dai et al. Nat. Nano. 2015 Caldwell et al. Nat Comm. 2014 ; Brar et al., Nano Letters 2014 ;

Near field coupling of graphene hot electrons with substrate phonons

Graphene on 3D oxide

Graphene on 2D h-BN

heat diffusion to the gate

Graphene current fluctuations emit HPP radiations deep into hBN bulk

Klien and Zener Tunneling

Katsnelson, Novoselov, Geim, Nat. Phys.2, 620 (2006) Graphene 2017, opto-electronics Kane et al., J. Phys. : Condens. Matter 27 (2015)

Zener-Klein Tunneling (ZKT)

Threshold field for ZKT

Pauli blocking of ZKT $E > E_{zk} = \frac{2E_F}{el_{zk}} \sim k_F^3$ e-h creation by ZKT $\dot{n}_{e-h}^{ZK} = \frac{e k_F}{\pi^2 \hbar} (E - E_{ZK})$

Noise thermometry at high bias

High frequency to overcome 1/f noise

Betz et al. / Phys. Rev. Lett. 109 (2012) 056805 Betz et al. / Nat. Phys. 9 (2013) 109 Brunel et al. / J. Phys. : Condens. Matter 27 (2015) 164208 Laitinen et al. / Phys. Rev. B. 91 (2015) 121414(R)

Thermal current noise $S_I = 4 G k_B T_N$

Noise thermometry in the ZKT regime

Out-of-equilibrium e-h population

$$k_B T_N = \int_{-\infty}^{\infty} f(1-f) dE \approx \frac{n_e + n_h}{DOS}$$
$$n_e = \int_0^{\infty} DOS \times f dE ;$$
$$n_h = \int_0^{\infty} DOS \times (1-f) dE$$

Hot electrons + holes $\int_{-\infty}^{\infty} f(1-f)dE$ $k_B T_N \approx k_B T_e + \frac{n_h}{DOS}$

Experiment

High mobility BLG sample

Intraband current saturation

Noise temperature features

Transport is featureless. Main noise features are :

- 1) Superlinear $T_N(E) \Leftrightarrow$ current saturation
- 2) Temperature plateaus in ZKT regime
- 3) Thershold at ZKT onset (arrows)
- 4) Linear $T_N(E)$ at neutrality (ZKT e-h creation)
- 5) Voltage threshold \Leftrightarrow activation energy 200 meV

Same features in SLG/TLG

Conventional cooling mechanism ?

electron conduction to the leads

e-e interactions (thermalisation) $\rightarrow \tau_{ee} \sim 20 fs$

Wiedemann-Frantz heat conduction $k_B T_N \equiv \langle k_B T_e \rangle = \frac{\sqrt{3}}{8} \times Length \times \sqrt{P/\sigma}$

electron conduction

AC phonon cooling ?

Neutral graphene cools better than doped graphene at high bias ! AC-phonons

Graphene 2017, opto-electronics

OP phonon cooling ?

HPP cooling !

Superplanck HPP cooling of Graphene

Impedance matching

$$P = \frac{n}{4\pi^2} \frac{\hbar\omega\Delta\omega}{\exp[\hbar\omega/k_B T] - 1} \times M$$
$$M = \left[\frac{4Re(Y_0)4Re(\sigma)}{|Y_0 + \sigma|^2}\right] \quad \text{(non-local emissivity)}$$
$$\sigma(q, \omega) \qquad \text{(non-local graphene conductivity)}$$

HPPs are propagative modes

The thermal radiative cooling picture

EXPERIMENT

From thin to thick h-BN

Noise measurement of au_{HPP}

HPP cooling balances max Joule Power

ZKT-FETs as power amplifiers with efficient HPP cooling

Bottom gated G-FETs

Constant carrier density

Zener-Klein-Tunneling transistor

ZKT-FETs as power amplifers

GoBN Zener-Klein transistor

Panasonic : X-GaN Power transistor

5 merits of h-BN

- 1. High mobility
- 2. Large saturation currents (power amplification ?)
- 3. Pinchoff replaced by Zener-Klein tunneling
- 4. Compensation of ZK tunneling by a bias induced doping depletion
- 5. No thermal degradation => cooling by hyperbolic hBN phonons !!!

- 1. HPP cooling promotes h-BN is the ideal heat sink
- 2. Zener-Klein Tunneling optimizes HPP emission
- 3. ZKT-FETs are promising high power transistors

Contributors

W. Yang (post-doc), S. Berthou (PhD student), Q. Wilmart (PhD student)

A. Denis, M. Rosticher (LPA, RF electronics and clean room engineers)

X. Lu, G. Zhang (Beijing, sample fabrication)

T. Taniguchi, K. Watanabe (NIMS, hBN crystals)

G. Fève, J.M. Berroir, BP, C. Voisin, E. Baudin (LPA meso / optics groups)