

Optical Hall effect in graphene by strain engineering

Viet-Hung Nguyen, Aurélien Lherbier and Jean-Christophe Charlier

Institute of Condensed Matter and Nanosciences Université catholique de Louvain Louvain-la-Neuve, Belgium

Introduction: Hall effect

Observation of V_H (along Oy) when I (along Ox) and B (along Oz) are applied

Introduction: optical Hall effect

Interaction between light and charge carriers

Introduction: optical Hall effect

Interaction between light and charge carriers

external magnetic field $B \rightarrow \text{optical Hall conductivity } \sigma_{xy}(\omega, B)$

Introduction: optical properties of graphene

Introduction: optical properties of graphene

Effects of strain:

EPL 92, 67001 (2010): theoretical

Motivation: optical Hall effect in strained graphene?

Nguyen et al., 2D Materials 4, 025041 (2017)

Model and methodologies

- Uniaxial strain: magnitude ϵ & direction θ
- Light: frequency ω & polarization ϕ

Calculation methods:

- Density functional theory (DFT) with the SIESTA code
- Semi-empirical tight-binding (TB) method with the Kubo formula:

$$\sigma_{pq}(\omega) = \frac{2e^{2}\hbar}{iS} \sum_{k \in BZ} \sum_{n,m} \frac{f(E_{n}) - f(E_{m})}{E_{n}(k) - E_{m}(k)} \frac{\langle n|\hat{v}_{p}|m\rangle \langle m|\hat{v}_{q}|n\rangle}{\hbar\omega + E_{n}(k) - E_{m}(k) + i\eta}$$

conduction bands

- 2 distinguishable K-points
- 3 distinguishable M-points

Kubo formula for optical conductivities

$$\sigma_{pq}(\omega) = \frac{2e^{2}\hbar}{iS} \sum_{k \in BZ} \sum_{n,m} \cdots \cdots \frac{\langle n | \hat{v}_{p} | m \rangle \langle m | \hat{v}_{q} | n \rangle}{\hbar \omega + E_{n}(k) - E_{m}(k) + i\eta} \quad \text{with} \quad C_{pq}(k) = \langle n | \hat{v}_{p} | m \rangle \langle m | \hat{v}_{q} | n \rangle$$

Nguyen et al., 2D Materials 4, 025041 (2017)

Kubo formula for optical conductivities

$$\sigma_{pq}(\omega) = \frac{2e^{2}\hbar}{iS} \sum_{k \in BZ} \sum_{n,m} \cdots \cdots \frac{\langle n | \hat{v}_{p} | m \rangle \langle m | \hat{v}_{q} | n \rangle}{\hbar \omega + E_{n}(k) - E_{m}(k) + i\eta} \quad \text{with} \quad C_{pq}(k) = \langle n | \hat{v}_{p} | m \rangle \langle m | \hat{v}_{q} | n \rangle$$

 $coefficient C_{xy}(\mathbf{k}) \rightarrow \sigma_{xy} = \sigma_{xy}^{+} - \sigma_{xy}^{-}$

conduction bands

(a.u.)

4

2

-0

Results: possible large values of σ_{xy}

Results: direction dependence of \sigma_{xy}

- σ_{xy} depends only on ω and ε but also light polarization ϕ and strain direction θ

- σ_{xy} generally exhibits three peaks but only two if ϕ or $\theta \equiv \operatorname{armchair/zigzag}$ direction

Results: direction dependence of \sigma_{xy}

Results: optical Hall effect in other materials

strain engineering: a common technique to generate optical Hall effect!!!

Conclusion

- strain engineering: general/alternative approach to achieve optical Hall effect
- both value and sign of σ_{xy} are tunable by strain (ϵ, θ) and incident light (ω, ϕ)
- => possible opto-electro-mechanical applications:

e.g., AC Hall systems, optical modulators, sensors, rotators, polarizers?

Conclusion

Faraday rotation

- Low energy lights

Nguyen et al., 2D Materials 4, 025041 (2017)

Conclusion

- strain engineering: general/alternative approach to achieve optical Hall effect
- both value and sign of σ_{xy} are tunable by strain (ϵ, θ) and incident light (ω, ϕ)
- => possible opto-electro-mechanical applications:

e.g., AC Hall systems, optical modulators, sensors, rotators, polarizers?

THANK YOU FOR YOUR ATTENTION

