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Graphene derivatives 



 - 
- Superlative mechanical strength  
   (Young’s modulus of 1100 GPa) 
- Unparalleled thermal conductivity  
   (5000 W/m/K) 
- Exceptional electrical conductivity  
   (mobility charge carrier 200,000    
   cm2/V/s) 
- High planar surface area  
  (2630 m2/g) 

Properties 

- Energy storage devices 
- Electrodes 
- Photodetectors 
- Biosensing 
- Photothermal therapy 
- Medical imaging 
- Drug delivery applications 

Introduction 

Applications 
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Graphene derivatives 

0D fullerene 1D CNTs 

3D graphite 2D graphene 



Introduction 

 

 

- Drug LE: 0.2-5% 

Drawbacks: 

- Unpredictable 
gelation tendencies 

- Low incorporation 
rate, crystalline 
structure 

 

 

 

- Drug loading 
efficiency (LE):   
15-95% 

Drawbacks: 

- Tedious 
synthesis route 

- Loading 
capapcity ≈20 
wt.% 

- Right selection 
of polymer 

- Functional 
groups present 

- Charge 

 

- Drug LE: 95% 
- Ease of 
functionalization 
- Drug delivery of 
hydrophobic drugs 
without 
modifications 

- High drug loading 
≈200 wt.% via pi-pi 
stacking 

 

Polymeric micelles 

Lipids 

GO / reduced GO (RGO) 
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Graphene and other drug delivery cargos 



Modified Hummer’s method. 
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72 h 

Graphene oxide 
(GO) 

Chemical reduction 

Graphene/ 
Reduced 

graphene oxide 
(RGO)  

anhydrous 
hydrazine, 
hydrazine 
monohydrate, 
sodium 
borohydrate, 
hydroquinone, 
metal/ 
hydrochloric acid  

Graphite powder 

Concerns 
-Toxicity 

Research Background 
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Conventional Graphene production 

Muthoosamy K, Bai RG, Manickam S. Graphene and 
graphene oxide as a docking station for modern drug 
delivery system. Current Drug Delivery 2014;11;1-18.  



Research Background 

2-layered drug loading 

loading on top 

loading at bottom 

COOH

HO

COOH

OH

OH

COOH

COOH

COOH

OH

Drug loading on GO & RGO 

Limitations: 
-Steric hindrance 

Limitations: 
-Solubility 

Graphene oxide 
(GO) 

Reduced graphene 
oxide (RGO)  

6 

Graphene as drug delivery cargo 



Use of mushroom extract as an effective reducing agent. 

 

Fig. 1: Schematic representation of RGO production from the 
reduction of GO. 

In-situ reduction of 
GO with reusability of 
reducing agent (3x) 
with 75% conversion 
efficiency 
 
Green-synthesis with 
easy separation, 
purification and bulk 
production 

Research highlights 

Methodology – Part 1 

Synthesis of RGO 

Graphene  
Oxide 

Reduced  
Graphene Oxide  

Ganoderma  
lucidum 

(GL) 
extract 

85˚C 
1 h 

COOH

HO

COOH

OH

OH

COOH

COOH
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OH
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+ 

GL 
extract 

reusable (3x) 
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Fig. 2: Solubility of RGO in (a) water (b) 
PBS buffer (c) ethanol (d) methanol and 
(e) acetone. 

≈ 200 nm  
lateral  
dimension 

1-2 nm  
thickness 

Fig. 3: FESEM images of (a) GO 
and (b) RGO and HRTEM 
images of (c) GO and (d) RGO. 

Research highlights  
 

Dispersible in water and other 
solvents and stable for a year 
RGO nanosheets (3 layers thick based 
on Raman spectroscopy)  
 

 

Results – Part 1 
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Characterization of RGO 
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Results – Part 1 

Fig .4:  
Representative 
image of cell 
viability assay of 
GO on HT-29, 
U87MG, MRC-5 
cells 

Sample Cell line (IC50 µg/ml) 

HT-29 U87MG MRC-5 

GO 261.1 26.27 138.2 

RGO 392.7 132.40 364.4 

Table 1: IC50 values of cells upon 
treatment with GO and RGO. 

Research highlights  
 

RGO exceedingly biocompatible to    
HT-29, U87MG cancer cells and MRC-5 
normal cells 
 

 

Cell viability of GO and RGO 

Muthoosamy K, Bai RG, Abubakar IB, et al. Exceedingly 
biocompatible and thin-layered reduced graphene oxide 
nanosheets using an eco-friendly mushroom extract 
strategy. Int. Journal of Nanomedicine. 2015;10:1505-1519.  



Application of RGO – drug delivery of hydrophobic 
drugs Curcumin (Cur) and Paclitaxel (Ptx) 

Methodology – Part 2 

Fig. 5: Schematic representation of drug loading onto RGO. 

PF-127 
(polymer) 

Cur IC20 Ptx 

reduced graphene  
oxide (RGO) Cur loaded GP Cur-Ptx loaded GP polymer-functionalized RGO (GP) 

Fig. 6: Cur and Ptx delivery into cancer cells using a GP cargo. 
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Muthoosamy K, Abubakar IB, Bai RG, et al. Exceedingly 
higher co-loading of Curcumin and Paclitaxel onto polymer-
functionalized reduced graphene oxide for highly potent 
synergistic anticancer treatment. Sci. Rep., 6, 32808 (2016). 



Cur-Ptx loaded 
GP 

Unloading of Cur & Ptx 
from GP 

Cancerous cell – pH 4-5 at the 
intracellular lysosomes 

Normal cell – 
pH7 

OH

OH

OH

OMe

HO

HO

MeO

Curcumin 
GP cargo 

Paclitaxel 

Fig.7: Besides pi-pi interactions, drugs are also held by  
weak hydrogen bonding. 

Results - Drug loading and unloading 

Fig. 8: Schematic representation of  
pH sensitive drug unloading from RGO. 

 
Cur loading efficiency (%) = 97 ± 0.07 
Cur loading capacity = 678 wt. % 
Ptx loading efficiency (%) = 98 ± 0.15  
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Drug loading and principles 



Results – Part 2 
 

 
 

By 48 h, 50% of Cur was 
released, only 25% of Ptx, at 
pH 4. 
Drug release at pH 4 > pH 
7.4. 
Slow release suggest good 
stability of GP-Cur-Ptx hybrid 
system. 
Release of Cur in advance 
would allow 
chemosensitization of cancer 
cells, which in turn increase 
therapeutic efficacy of Ptx. 

 
 
 

Fig. 9: Release profile of Cur and Ptx from the  
GP-Cur-Ptx system in PBS buffer at pH 4 and at 7.4,  
monitored for 90 h.  
Data presented are mean ± SD of triplicates (n=3).  
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Drug release profile 



13 

Results – Part 2 

No Cells IC20 dose of 
Ptx (ng/ml) 

Dose of GP-Cur which induced 
50% growth inhibition in 
combination with IC20 of Ptx 
(µg/ml) 

CI 

1 
 
A549 

 
69.7 

 
13.24 ± 1.8 0.54 

2 
 
MDA 

 
46.7 

 
1.450 ± 1.9 0.43 

3 
 
MRC-5 

 
69.7 

 
25.71 ± 1.2 - 

4 
 
MRC-5 

 
46.7 

 
37.50 ± 1.2 - 

Table 2. Combination index (CI) analysis of GP-Cur-Ptx against A549 and MDA cells 
and the effect of these respective doses on MRC-5 cells, in terms of IC50 values.  

Cell viability assay on A549 and MDA cells  



Fig. 10: ROS generation of A549 and MDA cells.  
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Results – Part 2 
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Percentage of ROS generation  
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Results – Part 2 

ROS generation images 

Fig. 11: ROS generation images of A549 and MDA cells. 

 
In GP-Cur-Ptx, 
Cur also acts as 
antioxidant, 
which induces 
adverse effect 
on Ptx, thus 
increased ROS 
level. 
 

In GP-Cur, Cur as 
pro-oxidant: induce 
ROS accumulation. 



Results – Part 2 

 
 
Rod-like structure in 
A549/MDA cells: 
-Only drugs were 
internalized.  
-GP serves as drug 
delivery vehicle.  
 
 

Fig. 12: Representative images of ROS generation in MDA cells. 
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ROS generation images 

? 

Is the elevated 
ROS due to the 
GP cargo? 
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Fig. 13: Morphology 
images of 
untreated cells and 
cells treated with 
the drug carrier, GP 
at 0.15 and 0.30 
mg/ml for MRC-5, 
A549 and MDA-MB-
231 cells.  

Results – Part 2 
Morphology of cells treated with concentrated 
GP cargo 



A549
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Results – Part 2 

Fig. 15: Merged images of A549 cells after staining with Annexin-Cy3 
and 6-CFDA. (A) untreated cells, and cells treated with: (B) Cur;      
(C) Ptx; (D) GP-Cur; (E) GP-Ptx and (F) GP-Cur-Ptx.                       
Arrows labelled ‘A’ are representation of typical features of cells 
undergoing apoptosis. 

Fig. 14: Percentage of 
apoptosis  
induced by the  
treatment groups  
on A549 cells. 
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Percentage of apoptosis in A549 cells 



MDA-MB-231
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Results – Part 2 

Fig. 17: Merged images of MDA-MB-231 cells after staining with 
Annexin-Cy3 and 6-CFDA. (A) untreated cells, and cells treated with: 
(B) Cur; (C) Ptx; (D) GP-Cur; (E) GP-Ptx and (F) GP-Cur-Ptx.        
Arrows labelled ‘A’ are representation of typical features of cells 
undergoing apoptosis. 

Fig. 16: Percentage of 
apoptosis 
 induced by the  
treatment groups  
on MDA-MB-231 cells. 
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Percentage of apoptosis in MDA-MB-231 cells 



• RGO preparation by mushroom mediated reduction of GO. 

• FA attachment to RGO by direct loading. 

Methodology 

Application 2- Biosensing 

Folic acid (FA) modified RGO (RGO-FA) 

Folic acid (FA) 
Light sensitive reaction 

RGO 

RGO-FA 

Stirring , 12h 
 temp 37°C 

Centrifugation 
10,000 rpm for 5 min 

Mixing 
Transfer of the 
reaction vessel 
to avoid light 
exposure 

Fig. 18: Schematic diagram of RGO-FA preparation. 

Bai RG, Muthoosamy K, Huang NM, et al.Highly sensitive enzyme-less biosensor for cancer detection using folic acid 
modified reduced graphene oxide. In Press, 2017. 



Folate receptor (FR) 

Normal cell Cancer cell 

Electrochemical 
 sensing 

RGO-FA modified glassy 
carbon electrode (GCE)  

FR  
RGO-FA interaction 

with FR  

+ 

Detection of FR  

Methodology 

Detection of folate receptor (FR) using RGO-FA 

Fig. 19: Illustration of over-expression 
of FRs in cancerous cells. 

Fig. 20: Schematic representation of RGO-FA modified GCE 
and its use in FR detection. 



Fig. 21: CV analysis of bare GCE, RGO/GCE and 
RGO-FA/GCE and RGO-FA/GCE + 100 pM FR in 
0.1 M [Fe(CN)6]3−/4− .  

Fig. 22: EIS spectra of bare GCE, RGO/GCE and 
RGO-FA/GCE + 100 pM FR in 0.1 M [Fe(CN)6]3−/4−.  

Results – Part 3 

RGO-FA sensing of FR using CV and EIS 



 Fig. 23: DPV analysis of RGO-FA with the addition 
of FR at predetermined intervals. Fig. 24: Interference analysis of RGO-FA 

with the addition of  serum protein (SP) 
(100 pM). 

Results – Part 3 

RGO-FA sensing of FR using DPV 

RGO-FA interference 
studies 

Linear range: 6-100 pM, s/n=3, sensitivity 0.037 μA/pM. 



Conclusion 

• Efficient reduction of GO to RGO using commercial grade 
mushroom powder. 

• A readily water soluble and stable (1 year) RGO. 

• Cur loading onto GP cargo: 

 - 687 wt% 

 - Highest observed so far 

• GP-Cur-Ptx system: 

 - Potent against A549 (13.24 µg/ml) and MDA-MB-231  

   (1.450 µg/ml) cancer cells (compared to treatments  

   with single drugs). 

 - Highly biocompatible and cell-specific 

   (the same dose tested on MRC-5 (normal cells)  

  shows no toxicity). 
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Conclusion 

• GP-Cur-Ptx system: 

 - Only the drugs were engulfed by cells, leaving behind 
    the GP cargo. 

  

 

• Biosensing studies: 

 - RGO-FA based cancer cell detection targeting FR  
    showed LOD of 1.69 pM (DPV).      

 - RGO-FA sensor showed good specificity towards FR even 
   in presence of interfering proteins. 
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