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Motivation
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Over the past decade, the spin Hall e�ect (SHE) has become the
standard pure spin-current generator (a) and detector (b).
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Six-terminal graphene device

5

2

1

W

L

I1

I2

IM
Sz

x

y

6

4

3

VNL

H = − γ0∑
〈ij〉

c†
i cj +

2i√
3
VI ∑
〈〈ij〉〉∈R

c†
i~s · (~dkj ×~dik)cj

+ iVR ∑
〈ij〉∈R

c†
i~z · (~s×~dij)cj −µ ∑

i∈R
c†
i ci .

4 / 18
Spin Hall E�ect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene

N



De�nition of Spin Hall angle and Nonlocal

resistance
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Spin Hall angle

θsH = I Sz5 /I1

Nonlocal resistance

RNL = VNL/I1 = (V3−V4)/I1
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Nonlocal resistance and spin Hall angle in

multiterminal graphene
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We calculate the total charge Ip and spin I
Sz
p currents and voltages

Vp in leads p=2�6 in response to injected charge current I1 using
the multiterminal Landauer-Büttiker formula, as implemented in
KWANT (http://kwant-project.org/).

7 / 18
Spin Hall E�ect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene

N



Nonlocal resistance and spin Hall angle in

multiterminal graphene

Nonzero RNL even when all SOC terms are switched o� (VR =
VI = 0), while keeping random on-site potential µ 6= 0 due to Au
adatoms.

Complex sign change of RNL.

RNL = RSHE
NL +ROhm

NL +R
qb
NL +R

pd
NL
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Additive contributions to Nonlocal

resistance

RSHE
NL positive combined direct and inverse SHE.

ROhm
NL positive classical di�usive charge transport

R
qb
NL negative quasiballistic contribution due to T32 6= 0

R
pd
NL positive pseudodi�usive transport in Dirac materials

For devices with W > L, the positive sign of RNL is dominated
by R

pd
NL.

For devices with L>W , ROhm
NL can be neglected; then, the main

competition is between R
qb
NL and RSHE

NL .
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Scaling of the pseudodi�usive contribution

to RNL
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In pristine graphene, this posi-
tive nonlocal signal around the
CNP is speci�c to Dirac elec-
tron systems.

This mechanism provides
background contribution R

pd
NL

of positive sign to total RNL,
as long as W > L.
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Spin Hall angle as a function of the

concentration of randomly scattered Au

adatoms
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The values of θsH are averaged
over the Fermi energy interval
[−0.01γ0,0.01γ0].

θsH increases with the adatom
concentration in the limit of
low ni .
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Nonlocal resistance for a uniform

distribution of gold adatoms
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sH

The large value of the nonlocal signal and θsH is away from CNP
due to doping of graphene by µ = 0.3γ0, viewing the central region
as a single large cluster.
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Six-terminal graphene device for isolating

the SHE contribution to RNL
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We remove adatoms in the channel for isolating RSHE
NL . For a suf-

�ciently long channel, R
pd
NL = 0 due to L>W and R

qb
NL, R

Ohm
NL → 0

due to the absence of adatom-induced scattering in the channel.
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Six-terminal graphene device for isolating

the SHE contribution to RNL
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sH
RNL and θsH exhibit a sharp peak at about the same Fermi en-
ergy located very close to the CNP, which demonstrates one-to-
one correspondence between directly measurable charge transport
quantity RNL and indirectly inferred spin transport quantity θsH.
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Summary

By using the multiterminal LB formula, we obtained
θsH ∼ 0.1�0.3 in Au-decorated graphene with large Au-adatom
concentration ni = 15%.

θsH signi�cantly decreases with temperature and adatom

clustering.

The SHE contribution to RNL was isolated in a special
con�guration with an impurity-free channel and L>W .

There is a one-to-one correspondence between directly

measurable RNL and indirectly inferred θsH.
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