Spin Hall Effect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene

Juan Manuel Marmolejo-Tejada

Grupo de Bionanoelectrónica

Universidad del Valle, Colombia

Quantum Transport Theory Group University of Delaware, USA

D. Van Tuan, J. M. Marmolejo-Tejada, X. Waintal, B. K. Nikolić, S. O.Valenzuela and S. Roche, Phys. Rev. Lett., 117(2016) 176602.

Introduction

Nonlocal resistance and spin Hall angle in multiterminal graphene

3 Scaling of spin Hall angle and nonlocal resistance with adatom concentration

(4) Six-terminal graphene geometry for isolating the SHE contribution to $R_{\rm NL}$

Motivation

Over the past decade, the spin Hall effect (SHE) has become the standard pure spin-current generator (a) and detector (b).

Six-terminal graphene device

$$\begin{aligned} \mathscr{H} &= - \gamma_0 \sum_{\langle ij \rangle} c_i^{\dagger} c_j + \frac{2i}{\sqrt{3}} V_I \sum_{\langle \langle ij \rangle \rangle \in \mathscr{R}} c_i^{\dagger} \vec{s} \cdot (\vec{d}_{kj} \times \vec{d}_{ik}) c_j \\ &+ i V_R \sum_{\langle ij \rangle \in \mathscr{R}} c_i^{\dagger} \vec{z} \cdot (\vec{s} \times \vec{d}_{ij}) c_j - \mu \sum_{i \in \mathscr{R}} c_i^{\dagger} c_i. \end{aligned}$$

4 / 18

Definition of Spin Hall angle and Nonlocal resistance

 $\frac{\text{Spin Hall angle}}{\theta_{\text{sH}} = l_5^{S_z}/l_1}$

1710

Nonlocal resistance $R_{\rm NL} = V_{\rm NL}/I_1 = (V_3 - V_4)/I_1$

Introduction

2 Nonlocal resistance and spin Hall angle in multiterminal graphene

3 Scaling of spin Hall angle and nonlocal resistance with adatom concentration

(4) Six-terminal graphene geometry for isolating the SHE contribution to $R_{\rm NL}$

Nonlocal resistance and spin Hall angle in multiterminal graphene

We calculate the total charge I_p and spin $I_p^{S_z}$ currents and voltages V_p in leads p = 2-6 in response to injected charge current I_1 using the multiterminal Landauer-Büttiker formula, as implemented in KWANT (http://kwant-project.org/).

Nonlocal resistance and spin Hall angle in multiterminal graphene

Nonzero $R_{\rm NL}$ even when all SOC terms are switched off ($V_R = V_I = 0$), while keeping random on-site potential $\mu \neq 0$ due to Au adatoms.

Complex sign change of $R_{\rm NL}$.

 $R_{\rm NL} = R_{\rm NL}^{\rm SHE} + R_{\rm NL}^{\rm Ohm} + R_{\rm NL}^{\rm qb} + R_{\rm NL}^{\rm pd}$

Additive contributions to Nonlocal resistance

$R_{\rm NL}^{ m SHE}$	positive	combined direct and inverse SHE.
$R_{\rm NL}^{\rm Ohm}$	positive	classical diffusive charge transport
$R_{ m NL}^{ m qb}$	negative	quasiballistic contribution due to $T_{32} eq 0$
$R_{ m NL}^{ m pd}$	positive	pseudodiffusive transport in Dirac materials

For devices with W>L, the positive sign of $R_{\rm NL}$ is dominated by $R_{\rm NL}^{\rm pd}$.

For devices with L > W, $R_{\rm NL}^{\rm Ohm}$ can be neglected; then, the main competition is between $R_{\rm NL}^{\rm Qb}$ and $R_{\rm NL}^{\rm SHE}$.

Introduction

2 Nonlocal resistance and spin Hall angle in multiterminal graphene

3 Scaling of spin Hall angle and nonlocal resistance with adatom concentration

(4) Six-terminal graphene geometry for isolating the SHE contribution to $R_{\rm NL}$

Scaling of the pseudodiffusive contribution to R_{NL}

In pristine graphene, this positive nonlocal signal around the CNP is specific to Dirac electron systems.

This mechanism provides background contribution $R_{\rm NL}^{\rm pd}$ of positive sign to total $R_{\rm NL}$, as long as W > L.

Spin Hall Effect and Origins of Nor

Spin Hall angle as a function of the concentration of randomly scattered Au adatoms

The values of θ_{sH} are averaged over the Fermi energy interval [-0.01%, 0.01%].

 $\theta_{\rm sH}$ increases with the adatom concentration in the limit of low n_i .

Nonlocal resistance for a uniform distribution of gold adatoms

The large value of the nonlocal signal and $\theta_{\rm sH}$ is away from CNP due to doping of graphene by $\mu = 0.3\gamma_0$, viewing the central region as a single large cluster.

Introduction

2 Nonlocal resistance and spin Hall angle in multiterminal graphene

3 Scaling of spin Hall angle and nonlocal resistance with adatom concentration

(4) Six-terminal graphene geometry for isolating the SHE contribution to $R_{\rm NL}$

Six-terminal graphene device for isolating the SHE contribution to *R*_{NL}

We remove adatoms in the channel for isolating $R_{\rm NL}^{\rm SHE}$. For a sufficiently long channel, $R_{\rm NL}^{\rm pd} = 0$ due to L > W and $R_{\rm NL}^{\rm qb}$, $R_{\rm NL}^{\rm Ohm} \to 0$ due to the absence of adatom-induced scattering in the channel.

Six-terminal graphene device for isolating the SHE contribution to $R_{\rm NL}$

 $R_{\rm NL}$ and $\theta_{\rm sH}$ exhibit a sharp peak at about the same Fermi energy located very close to the CNP, which demonstrates one-toone correspondence between directly measurable charge transport quantity $R_{\rm NL}$ and indirectly inferred spin transport quantity $\theta_{\rm sH}$.

Introduction

2 Nonlocal resistance and spin Hall angle in multiterminal graphene

Scaling of spin Hall angle and nonlocal resistance with adatom concentration

(4) Six-terminal graphene geometry for isolating the SHE contribution to $R_{\rm NL}$

Spin Hall Effect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene

17 / 18

Summary

- By using the multiterminal LB formula, we obtained $\theta_{\rm sH} \sim 0.1-0.3$ in Au-decorated graphene with large Au-adatom concentration $n_i = 15\%$.
 - + θ_{sH} significantly decreases with temperature and adatom clustering.
- The SHE contribution to R_{NL} was isolated in a special configuration with an impurity-free channel and L > W.
 - There is a one-to-one correspondence between directly measurable $R_{\rm NL}$ and indirectly inferred $\theta_{\rm sH}$.

