Graphene 2017, Barcelona

Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS₂

2017. 3. 30. Thu

Sungwoo Lee

Dept. of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

Collaborators

• Dept. of Materials Science and Engineering, Seoul Nat'l Univ.

> Gun-Do Lee Joohee Lee Seungwu Han Euijoon Yoon

- of Oxford
 - Alex W. Robertson Shanshan Wang Qu chen Angus I. Kirkland Jamie H. Warner

Graphene 2017, Barcelona

• Dept. of Materials, Univ.

Nanotube Research Center, AIST Yung-Chang Lin Kazu Suenaga

 Convergence Materials Lab., Korea Institute of **Energy Research** Heeyeon Kim

Various 2D materials and MoS₂

Graphene

I d nm a b MnO2

Graphene 2017, Barcelona

http://www.ntu.edu.sg/home/z.liu/

Nat Nanotechnol 7, 699-712 (2012).

- Hexagonal layered structure
- Semiconductor:
 - Bulk: indirect, 1.29 eV
 - Monolayer: direct, 1.90 eV
- Large excitonic effect
- Applications: catalysis, transistor, optoelectronics

Our work: Cr and V dopants in MoS₂ monolayer

Published in ACS Nano, 10(11), 10227-10236 (2016)

- Substitutional Cr and V atom at Mo site were identified using annular dark field scanning transmission electron microscopy (ADF-STEM) and electron energy loss spectroscopy (EELS)
- Cr and V are stable under electron irradiation and high temperature
- DFT calculations for formation energy and density of states of charged dopants

Methods: MoS₂ synthesis and imaging [by Prof. Jamie H. Warner (U. of Oxford) group]

- CVD grown monolayer MoS_2 using MoO_3 and sulfur
- $MoS_2\,is$ transferred by PMMA scaffold technique to holey Si_3N_4 TEM grid
- ADF-STEM, AC-TEM imaging and EELS were performed at an accelerating voltage of 60 kV and 80 kV
- In situ heating holder was used for high-temperature imaging

Methods: DFT calculations

- DFT calculation using VASP code
- GGA with Perdew-Burke-Ernzerhof (PBE) functional was used for the exchange-correlation potential
- Formation energies of the charged defects were calculated using appropriate correction scheme
- All the experimentally known stable binary phases of Cr (or V) and S were calculated to determine chemical potentials of Cr and V

$$\begin{split} E_{\rm form}^{\rm iso} &= E_{\rm tot}^{\rm defect} - E_{\rm tot}^{\rm pristine} - \sum_{i} N_{i} \mu_{i} \\ &+ q \left(\epsilon_{\rm VBM}^{\rm pristine} + E_{\rm Fermi} \right) + E_{\rm corr}, \end{split}$$

Results and discussion

Low contrast intensities at Mo site

Distinguishing Cr and 2S by ADF-STEM image simulation

Graphene 2017, Barcelona

2017. 3. 30. Thu

Room temperature stability of substitutional metal atom

Graphene 2017, Barcelona

2017. 3. 30. Thu

Inclusion of Cr dopant in S vacancy line defects at high temperature

High temperature stability of metal substitutional atoms

DFT calculated formation energies and DOS of Cr and V

Graphene 2017, Barcelona

2017. 3. 30. Thu

Conclusion

- The presence of single atom substitutions of Cr and V for Mo in CVD monolayer MoS₂ has been experimentally demonstrated by a combination of ADF-STEM and EELS mapping
- Imaging of Cr with S vacancy line defects and time-series imaging at temperatures up to 800 °C confirm that the Cr substitution is a stable dopant configuration
- DFT calculations revealed formation energies, charge states, and change to the electronic properties by substitutional dopant

Thank you