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 BAW resonators are key-building blocks for radio frequency (RF) filters used in 
wireless communication devices (e.g. smartphones) 

Motivation 

Source: Oleksiy mark - Fotolia 



© Fraunhofer IAF  3 
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Bulk acoustic wave (BAW) resonator 

Frequency 

ω𝑠 

ω𝑝 

|Y| 

Frequency 

|Y| 

Floating potential electrode 
Bragg reflector 

AlN 

Si substrate 

BAW-SMR  

S G G 

passband 



© Fraunhofer IAF  5 

Equivalent circuit (BvD) 

Bulk acoustic wave (BAW) resonator 

𝝎𝒔 =
𝟏
𝑳𝟏𝑪𝟏

 

𝝎𝒑 =
𝟏
𝑳𝟏𝑪𝟏

𝟏 +
𝑪𝟏
𝑪𝟎

 C0: total plate capacitance  

L1, C1: mechanical resonator branch 
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 Parallel resistor Rp  represents 
viscous and dielectric losses (non-
zero electrode mass) 

 Serial resistor Rs  represents ohmic 
losses (non-zero electrode 
resistance)  

  

  

 

Electrode induced electrical and mechanical losses in 
BAW resonators 

𝑸𝒔 =
𝟏
𝑹𝒔

𝑳𝟏
𝑪𝟏

 𝑸𝒑 = ω𝒑𝑹𝒑
𝑪𝟏 + 𝑪𝟎
𝑪𝟏

𝑪𝟎 

Equivalent circuit (mBvD) 

Q factor as main resonator characteristic 
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 Resonance peak sharpness indicates Q factor 

 Q strongly depends on losses 

Influence of Rs and Rp on admittance curves 

Idea: thin conductive 
electrodes to reduce 
viscous losses  
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Graphene as massless electrode – Fuchs-Sondheimer model 
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𝝆𝒎𝒎𝒎𝒎𝒎 

 Fuchs-Sondheimer model 

𝝆 𝒈𝒈𝒈 = 𝝆𝒃𝒃𝒃𝒃 + 𝝆𝑺𝑺 
, 𝝆𝑺𝑺  ∼

 𝟏 + 𝟏

𝒅∗𝒍𝒍𝟏𝒅

∗ 𝝆𝒃𝒃𝒃𝒃 
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 Fuchs-Sondheimer model 

𝝆 𝒈𝒈𝒈 = 𝝆𝒃𝒃𝒃𝒃 + 𝝆𝑺𝑺 
, 𝝆𝑺𝑺  ∼

 𝟏 + 𝟏

𝒅∗𝒍𝒍𝟏𝒅

∗ 𝝆𝒃𝒃𝒃𝒃 

 

 Graphene is virtually massless , still 
conductive 

 

 

 

 

Graphene as massless electrode – Fuchs-Sondheimer model 
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𝝆𝒈𝒓𝒓𝒓𝒓𝒓𝒓𝒓 

   

  Reduction of viscous losses! 

 

Replacement of conventional metal electrodes  (Ti/Au) with graphene 

𝝆𝒎𝒎𝒎𝒎𝒎 
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Process development – Graphene growth and transfer 
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 Standard CVD process  

 Aixtron BlackMagic CVD reactor 

 Methane as precursor, H2 as carrier gas 

 Cu foil as catalytic substrate 

2D/G ratio > 2.5 

D/G < 0.15 
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Process development – Graphene growth and transfer 

Cufoil etching in APS 

 Graphene wet transfer process  

 Poly (methyl methacrylate) (PMMA) as 
protecion layer 

 Cu foil etching in Ammonium 
persulfate (APS) 
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Process development – Graphene growth and transfer 

2D/G 
ratio 

40 x 40 mm² Reproducable 𝑅𝑆 < 2kΩ 

40 x 40 mm² Best 𝑅𝑆 ≈ 350Ω 

15 x 10 mm² Best 𝑅𝑆 ≈ 280Ω 

 Sheet resistance of graphene on AlN 
via 4-point-measurement: 

 

Raman spectrum  - area scan 
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Mass reduction: 
𝑚𝐺𝐺 = 0.00037 𝑚𝑇𝑇/𝐴𝐴 

resonator area: 
200x200µm² 

 

BAW-SMR device design 
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Electrical characterization – network analyser 
measurements 

base admittance 
decrease from -35 
dB to -53 dB 
(change in C0) 
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Determination of quality factor via fitting of equivalent 
circuit parameters 
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𝑄𝑝,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1145 

𝑄𝑝,𝑇𝑇/𝐴𝐴 = 820 

Reduction of viscous losses! 
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Modifying electrode design 
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 Graphene avoids electrode induced 
frequency shift due to its virtually 
massless character  

 

 Top electrode metal bar design 
increases resonating area (C0) 

 

 Viscous losses are strongly reduced 
resulting in a significantly increased 
Q factor for parallel resonance (Qp) 

Summary 
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Outlook 
 Further improvements highly probable for 

graphene with Rs << 2kΩ regarding Qs and Qp 

Graphene doping, Multilayer graphene 
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Thank you for your attention! 
 

Thanks to our colleagues at Fraunhofer IAF. 
 
Thanks as well to our project partners, providing us with SMR samples for our 
graphene research activities. 
 
Project financed by Graphene Flagship. 
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