

High-Voltage Electrical Double-Layer Capacitors

Graphene Task Force Project Manager

Dr. Kun-Ping Huang

Mechanical and Mechatronics Systems Research Laboratories

Industrial Technology Research Institute (ITRI)

Taiwan, ROC

Graphene Background

- High specific surface ratio (2630 m²/g)
- High specific capacitor (530 F/g)
- > High electron transport (200, 000 cm $2 \cdot V 1 \cdot s^{-1}$)

http://physicsworld.com/cws/article/news/2012/mar/20/laser-writer-makes-graphene-supercapacitors

http://energyeducation.ca/encyclopedia/Supercapacitor

Graphene **Patent Analysis of Energy Storage**

- Graphene supercapacitor can provide high power density (>2k W/h)
- Supercapacitor has longer cycle life (>10, 000 cycles)

Trend Chart of Supercapacitor Patent

30% annual growth

11,852 patents

Graphene **LIB and Spercapacitor**

MP CVD Bottom-Up Synthesis

Graphene Nanowalls Growth and Doping

NGNW growth through Plasma

Bottom-Up Synthesis Graphene Allotrope

> 100 torr

< 100 torr

Graphene Powder

Graphene Nanowall

Supercapacitor Powder vs GNW

Chen, J., Bo, Z., & Lu, G. (2015). Vertically-Oriented Graphene. Springer International Publishing Switzerland, DOI, 10, 978-3.

Supercapacitor Powder vs GNW

Graphene powder with a lot reactive edge and random distribution. The reaction (oxidation or HER) is easy happen between the electrolyte and active material.

→ Cell voltage can't higher than 2.8V.

GNW with few edge and regular distribution and it provide these inner face between active material and electrolyte.

- \rightarrow without oxidation reaction or HER.
- \rightarrow Cell voltage raise to 4V.

Supercapacitor Edge Reaction

Reduce the electrode activity to electrolyte/the interface reactions

Gas evolution from an EDLC cell upon over-voltage application.

Naoi, K. (2010). 'Nanohybrid capacitor': the next generation electrochemical capacitors. Fuel cells, 10(5), 825-833.

Supercapacitor Powder vs GNW

Graphene Nanowalls Chemical Analysis

Graphene Nanowalls LP HRTEM

EELS

Supercapacitor NGNW

(a) CV curves and (b) constant-*i* charge-discharge curves of an N-graphene //LQ graphene ASC in 1 M TEABF₄/PC with a cell voltage of 2.5, 3.0, 3.5, 4.0 V at 50 mV/s or 2 A/g.

N-graphene (-)//GNW (+) is a 4V EDLC

Supercapacitor GNW-NGNW

(c) The charge-discharge curves of an N-GNW (-)//GNW (+) ASC in 1 M TEABF₄/PC with a cell voltage of 4.0 V at 0.3, 0.5, 1, 2, 3, and 5 A/g. (d) The C.E. and cell capacitance retention vs. charge-discharge current density for symmetric and asymmetric designs.

Supercapacitor Cycle Life Test

Conclusions

- MP CVD can grow and dope graphene at the same time.
- GNW → Oxygen free → inhibit oxidation reaction → Be positive electrode 1.43V
- NGNW → nitrogen inhibit HER reaction → Be negative electrode -2.57V
- Asymmetric electrodes can accomplish 4V electrical double-layer capacitors. (Energy Density is 53 Wh/kg; Power Density is 8k W/kg)

Acknowledgements

Funding

Ministry of Economic Affairs: G301AR3200

Collaboration

Graphene Task Force

Consultant

Prof. C. S. Kou

Prof. C. C. Hu

Team Members

Dr. C. C. Chang

6.0

Mr. H. F. Wang

Mr. J. C. Ho

20

Thanks for your attention!