Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions

<u>Yannick J. Dappe</u>, Qian Zhang, Longlong Liu, Shuhui Tao, Congyi Wang, Cezhou Zhao, César González, Richard J. Nichols, and Li Yang

Service de Physique de l'Etat Condensé, CNRS-CEA Saclay, France

Department of Chemistry and Department of Electrical and Electronic Engineering, Xi'an-Jiaotong Liverpool University, Suzhou, China

Department of Chemistry, University of Liverpool, U.K.

Department of Chemistry and Chemical Engineering, Chongqing University, China

Introduction to Molecular Electronics

J. C. Cuevas, E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment; World Scientific: Singapore, 2010. <u>Molecular Electronics</u> : a field of science which studies the electronic transport through molecular systems and its applications

Some questions :

- how do the electrons flow through a single molecule?
- can a molecule mimic the behavior of an ordinary silicon device or even bring new functionalities?

 - influence of the anchoring groups / electrodes in the electronic transport ?

Some example of graphitic electrodes

X. Guo et al., Science 311, 356 (2006)

- graphene electrodes

H.S.J. van der Zant et al., ACS Nano 10, 2521 (2016)

- carbon tip fiber for STM/AFM imaging : application to gold surfaces and graphite, and to octanethiols SAM on gold.

A. Castellanos-Gomez et al., Nanotechnology **21**, 145702 (2010)

- carbon tip for STM/AFM imaging on graphene/SiC

J. Moran Meza et al., Nanotechnology, **26**, 255704 (2015)

- conception of a model graphene tip : "all carbon" molecular junction

Nanoscale 6, 6953 (2014)

- STM images calculations

Nanotechnology **27**, 105201 (2016).

Hybrid metal/molecule/graphene junctions for Molecular Electronics

- I(s) measurements of alkanedithiol conductances with Au STM tip and graphene/Ni(111) substrate

- DFT + Keldysh-Green formalism for configuration and electronic structure and transport calculations

Q. Zhang et al, Nano Letters 16, 6534 (2016).

- evolution of the conductance with the molecular length (non-resonant tunneling regime) : $G = A \exp(-\beta L)$

- determination of the attenuation factor β , comparison with standard metallic junctions

Density Functional Theory (DFT) in localized orbital basis set Fireball

- intermolecular perturbation theory
- dipolar approximation
- sum rule

Phys. Rev. **B 79** (2009), Phys. Rev. **B 74** (2006), Europhys. Lett. **70** (2005)

STM model for electronic tranport calculations

Current calculation : Keldysh-Green formalism for out of equilibrium systems

 $I = \frac{4\pi e^2}{h} \int_{E_{\tau}}^{E_F + eV} \text{Tr}[T_{TS}\rho_{SS}(E)D_{SS}^r(E)T_{ST}\rho_{TT}(E - eV)D_{TT}^a(E - eV)]dE.$

C. González et al., Nanotechnology 27, 105201 (2016).

- theoretical results : transmission of the molecular junctions and projected Density of States (PDOS) on the molecular chains

- conduction through the HOMO level

- comparison with experiments and standard metallic junctions
- for length > 1nm, better conduction of the hybrid junction

Interpretation

- $\beta \sim \sqrt{(2m\phi/\hbar)}$ where ϕ is the electronic potential barrier
- $\phi = E_F E_{HOMO}$
- thiol adsorption on gold :

strong interface dipole, $E_F - E_{HOMO}$ very small

- <u>thiol molecular junction with gold electrodes</u> : zero resulting dipole, $E_F - E_{HOMO} \sim 2 \text{ eV}$ $\Rightarrow \beta \sim 0.9$

- <u>thiol molecular junction with gold and graphene electrodes</u> : resulting dipole at the gold/molecule interface, $E_F - E_{HOMO} \sim 0.4 \text{ eV}$ $\Rightarrow \beta \sim 0.3$

- much lower attenuation, better conductance for longer junctions

Conclusions and perspectives

- introduction to Molecular Electronics with graphitic electrodes
- I(s) method for conductance measurements on hybrid metal/molecule/graphene junctions for Molecular Electronics
- different results from standard metallic molecular junctions
- key parameter : molecule/surface interaction, Physics at the interface
- different interface dipoles due to different couplings : different molecular levels alignments leading to different attenuation factors
- importance of the HOMO position with respect to the Fermi level
- interest of graphene for low consumption molecular electronics devices

<u>Perspectives</u> : 2D materials electrodes like MoS_2 , WS_2 or small vdW heterostructures, or different anchoring groups, for new electrical behaviors in molecular junctions