Ultrasensitive NIR Photodetectors Based on Graphene-MoTe_2-Graphene Vertical vdWs Heterostructure

Lun Dai
School of Physics, Peking University, Beijing, China
Background and Motivation

- Ultrathin body
- Strong light-matter interaction
- Flexiblility
- vdwS assembly
- Large band gaps

transition-metal dichalcogenides (TMDs)

- Telecommunication
- NIR photodetector
- Remote sensing
- Biological imaging
We choose MoTe$_2$, since its bandgap is about 1.0 eV in its bulk form.

Photoconductors
- High responsivity
- Low speed
- External power supply

Photodiodes
- Low responsivity
- High speed
- Without external power
Grpahene-MoTe$_2$-Graphene Heterostructure

Uniformly large photoresponse area and short transmit distance

- CVD graphene
- Exfoliated MoTe$_2$
- Microscale triangular knife
- PMMA layer
- 1064 nm NIR laser illumination
- Obvious photovoltaic behavior

V_{oc}: 82 mV
I_{sc}: 1.5 µA

65 µW, 2 µm

The *I*_ds-*V*_ds* curves show asymmetric transport behaviors.

- Back-to-back Schottky barriers with different Schottky barrier heights.
- Ambient water vapor and oxygen p-doping of the top graphene.
- The *I*_sc and *V*_oc increase with the back-gate.
Photocurrent Generation

At $V_g=0$, the Schottky barrier height at G_T/MoTe$_2$ is higher than that at G_B/MoTe$_2$.

Due to the screening effect from the bottom graphene and MoTe$_2$, the Schottky barrier height at G_T/MoTe$_2$ is less sensitive to the back gate.
NIR Photoresponse Performance

- Back-gate voltage
- Laser power

When the power < 5 μW
- Responsivity ~ 110 mA W⁻¹
- EQE ~ 12.6%
Temporal Photoresponse

- Rise and fall times: 24 µs, 46 µs
- Considering the intrinsic response time of the mechanical chopping process (~10 µs), the rise and fall times are even shorter.
Comparison

An overall high performance

<table>
<thead>
<tr>
<th>Materials</th>
<th>V_{ds} (V)</th>
<th>Responsivity (mA W$^{-1}$)</th>
<th>Response time (ms)</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoTe$_2$</td>
<td>0</td>
<td>110</td>
<td>0.024</td>
<td>1064 nm</td>
</tr>
<tr>
<td>b-P</td>
<td>0.2</td>
<td><5</td>
<td>1</td>
<td>400 - 997 nm</td>
</tr>
<tr>
<td>b-P/MoS$_2$</td>
<td>3</td>
<td>153.4</td>
<td>0.015</td>
<td>1550</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>0.8</td>
<td>5200</td>
<td>44500</td>
<td>1070 nm</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>1</td>
<td>0.09</td>
<td>-</td>
<td>850 nm</td>
</tr>
<tr>
<td>MoS$_2$/Si</td>
<td>0</td>
<td>300</td>
<td>0.003</td>
<td>808</td>
</tr>
<tr>
<td>Bi/WS$_2$/Si</td>
<td>0</td>
<td>420</td>
<td><100</td>
<td>635</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>0</td>
<td>68</td>
<td>-</td>
<td>633 nm</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>0</td>
<td>220</td>
<td><0.05</td>
<td>488 nm</td>
</tr>
<tr>
<td>WS$_2$</td>
<td>0</td>
<td>>100</td>
<td>-</td>
<td>488 nm</td>
</tr>
<tr>
<td>SnS$_2$</td>
<td>2</td>
<td>8.8</td>
<td>0.005</td>
<td>457 nm</td>
</tr>
<tr>
<td>InSe</td>
<td>10</td>
<td>1.57×10^5</td>
<td>40-50</td>
<td>633</td>
</tr>
<tr>
<td>InSe</td>
<td>1</td>
<td>4×10^7</td>
<td>1</td>
<td>633</td>
</tr>
<tr>
<td>InSe</td>
<td>50</td>
<td>486</td>
<td>0.06</td>
<td>543</td>
</tr>
</tbody>
</table>
Photoresponse Properties in Visible Range

@ 473 nm, \(R \sim 205 \text{ mA W}^{-1} \) (EQE \(\sim 53.8\% \))

@ 633 nm, \(R \sim 183 \text{ mA W}^{-1} \) (EQE \(\sim 35.8\% \))
Conclusion

- Graphene-MoTe$_2$-Graphene vertical vdWs heterostructure, which has uniformly large photoresponse area and short transmit distance between the source and drain.
- Self powered with high responsivity (110 mA W$^{-1}$), high speed (24 μs) in the NIR range.
- Photo response can be tuned by the back-gate voltage.
Acknowledgement

Ph.D students: Xin Fang, Yilun Wang, Yi Wan, Qingjun Song, Wenhao Zhai
Colleagues: Dr. Yu Ye, Prof. Guangzhao Ran, Dr. Yanping Li

Fundings:
The National Basic Research Program of China,
The National Natural Science Foundation of China
Thank you!
The work function of MoTe$_2$ was reported to be 4.1–4.3 eV.