

Ultrasensitive NIR Photodetectors Based on Graphene-

MoTe₂-Graphene Vertical vdWs Heterostructure

Lun Dai

School of Physics, Peking University, Beijing, China

Background and Motivation

Background and Motivation

We choose $MoTe_2$, since its bandgap is about 1.0 eV in its bulk form .

Photoconductors Photodiodes

High responsivity Low responsivity

Low speed

High speed

External power supply

Without external power

Grpahene-MoTe₂-Graphene Heterostructure

Uniformly large photoresponse area and short transmit distance

- CVD graphene
- Microscale triangular knife
- > Exfoliated MoTe₂ > PMMA layer

- 1064 nm NIR laser illumination
- Obvious photovoltaic behavior

Kun Zhang, Yu Ye*, Lun Dai*, et al., ACS Appl. Mater. Interfaces 2017, 9, 5392–5398.

Detailed Electrical and Photoresponse Properties

 The Ids-Vds curves asymmetric transport behaviors.

Back-to-back Schottky barriers with different Schottky barrier heights Ambient water vapor and oxygen pdoping of the top graphene

• The *I*_{sc} and *V*_{oc} increase with the back-gate

Photocurrent Generation

Due to th screening effect from the bottom graphene and MoTe₂, the Schottky barrier height at $G_T/MoTe_2$ is less sensitive to the back gate.

Photocurrent @ G_B/MoTe₂

Photocurrent @ $G_T/MoTe_2$

NIR Photoresponse Performance

- Back-gate voltage
- Laser power

When the power < 5 μW

- Responsivity ~ 110 mA W⁻¹
- EQE ~ 12.6%

Temporal Photoresponse

- Rise and fall times: 24 μs, 46 μs
- Considering the intrinsic response time of the mechanical chopping process (~10µs), the rise and fall times are even shorter.

Comparison

Materials	$V_{\rm ds}({ m V})$	Responsivity (mA W ⁻¹)	Response time (ms)	Wavelength	
MoTe ₂	0	110	0.024	1064 nm	An overall high performance
b-P	0.2	<5	1	400 - 997 nm	
b-P/MoS ₂	3	153.4	0.015	1550	
MoS_2	0.8	5200	44500	1070 nm	
MoS_2	1	0.09	-	850 nm	
MoS ₂ /Si	0	300	0.003	808	
Bi/WS ₂ /Si	0	420	<100	635	
MoS_2	0	68	-	633 nm	
MoS_2	0	220	<0.05	488 nm	
WS_2	0	>100	-	488 nm	
SnS_2	2	8.8	0.005	457 nm	
InSe	10	1.57×10 ⁵	40-50	633	
InSe	1	4×10 ⁷	1	633	
InSe	50	486	0.06	543	

Photoresponse Properties in Visible Range

Conclusion

- Graphene-MoTe₂-Graphene vertical vdWs heterostructure, which has uniformly large photoresponse area and short transmit distance between the source and drain
- > Self powered with high responsivity(110 mA W⁻¹), high speed (24 μ s) in the NIR range
- Photo response can be tuned by the back-gate voltage

Acknowledgement

Ph.D students: Xin Fang, Yilun Wang, Yi Wan, Qingjun Song, Wenhao Zhai

Colleagues: Dr. Yu Ye, Prof. Guangzhao Ran, Dr. Yanping Li

Fundings:

The National Basic Research Program of China, The National Natural Science Foundation of China

Thank you!

