

Graphene Materials for High-Performance Li Storage

Hui-Ming Cheng(成会明)

- 1. Advanced Carbon Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), CAS, Shenyang 110016, China
- 2. Low-Dimensional Material and Device Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China

14 TW (2010) to 28 TW (2050)

D. Larcher & J. M. Tarascon, Nature Chem., DOI: 10.1038/NCHEM.2085, 17 Nov. 2014

World Energy Production

R. E. Smalley. 27th Illinois Junior Science & Humanities Symposium, Apr. 3(2005)

Stationary and Mobile Electric Energy Storage

Large scale electricity storage

Electricity storage for EVs & MDs

Requirements for Mobile Electrical Energy Storage

- Larger energy capacity
- Higher power capability
- Higher reliability
- Longer life
- Wider temperature range
- Better safety

Challenge for electrical energy storage

Common Features: Lower Energy Density @ Higher Power Density

Materials development plays a key role!

Gogotsi Yet al., Nature Mater 7(2008)45

Strategies for R & D of EES Materials

- Nanostructuring
- Nano/micro combination
- Core-shell structuring
- Materials combination
- Hybridization
- Pore structure control
- Surface modification
- Configuration design
- New device design

Higher energy density

Higher power density

Higher reliability

Longer life

Lower cost

C Liu, F Li, LP Ma, HMC, Advanced materials for energy storage, Adv. Mater., 22(2010) E28-64.

Graphene Materials

Graphene

Graphene Membrane

Graphene Oxide

Graphene 3D structure

Advantages of graphene for EES

- ✓ High electric conductivity
- ✓ Flexible and transparent
- ✓ Rich porous structures
- ✓ Easy surface functionalization
- Facile fabrication of membranes, coatings and 3D structures

Geim AK, et al., Nature Mater. 6(2007) 83

Toller MD, et al NanoLett. 8(2008)3498

Graphene can be a Core Component in energy storage devices

- Active substance
- Conducting network
- Catalysis
- Catalyst support
- Interface controller
- Substrate for composites

Li (Na, ...) ion battery

Li-S battery

Supercapacitor

Flexible battery

Synthesis of graphene sheets by chemical exfoliation of graphite

Large-Scale Production of High-Quality Graphene Materials

- Prototype line: 1.5 T/year (2012); production line: 30 T/year (2016)
 - Number of layers: < 10; Size: 1-5 μ m; Purity: >98wt%; Conductivity: ~1,000 S/cm
- Deyang Carbonene Technology Co., Ltd.

Patent: A new method to produce high-quality graphene, 201110282370.5.

A. Graphene Materials as Current Collector Coatings in LIBs

B. Graphene Materials as Conducting Additive for LIBs

Y Shi, et al., J. Power Source, 2011, 196, 8610

C. Graphene materials as anode materials?

- High irreversible capacity
- Low first Coulumbic efficiency

High irreversible

capacity:

- High surface area
- Rich functional

groups

Many defects

D. Making Hybrids: Use Graphene as Electrode Materials for EES

- Large capacity/capacitance
- Enhanced cycling stability
- Good rate capability

Structure of Graphene Hybrids

(a) Anchoring, (b) Wrapping, (c) Encapsulation,(d) Sandwich, (e) Layering, (f) Mixing

ZS Wu, et al., Nano Energy (invited review), 2012, 1, 107.

Wet Chemistry Synthesis of Graphene Hybrids

Anode for High Energy LIBs -- Co₃O₄/rGO Hybrids (Anchoring)

ZS Wu, et al. ACS Nano, 2010, 4, 3187.

Electrode for High-Energy ECs -RuO₂/rGO Symmetric ECs

Better cyclic performance

Higher energy at high power

MR

ZS Wu, et al., Adv. Funct. Mater. 2010, 20, 3595.

- Macroscopic mechanism (ex situ)
 - Formation of well-dispersed uniform oxide
 - nanoparticles on graphene
 - Suppression of pulverization of oxide particles
 - Formation of a conductive network
 - Prevention of re-stacking of rGO
- Microscopic mechanism (*in situ*)
 - Increase of *Li*⁺ diffusion rate to improve
 - reaction kinetics
 - Restriction of volume expansion

XY Shan, et al. *J Mater Chem A*, 2014, 2, 17808.

In Situ Studies on the Role of Graphene Materials

XY Shan, et al. J Mater Chem A, 2014, 2, 17808

Role 1: Increasing *Li*⁺ Diffusion Rate/ Improving *Li*⁺ Reaction Kinetics

R

Role 2: Interfacial Expansion-Restriction Effect

Graphene's Role in LIBs

Increase of the Li⁺ • diffusion rate High power dens Improvement of the ٠ **Excellent Lithium** *Li*⁺ reaction kinetics storage Superior cycling **Interfacial expansion** ٠ performance restriction

Comparison of Li-S batteries with LIBs

Chem Soc Rev

REVIEW ARTICLE

Nanostructured sulfur cathodes†

Cite this: Chem. Soc. Rev., 2013, Yuan Yang,^a Guangyuan Zheng^b and Yi Cui*^{ac} 42, 3018

nature **REVIEW ARTICLE** materials PUBLISHED ONLINE: 15 DECEMBER 2011 | DOI: 10.1038/NMAT3191 Li-O₂ and Li-S batteries with high energy storage Peter G. Bruce^{1*}, Stefan A. Freunberger¹, Laurence J. Hardwick^{1†} and Jean-Marie Tarascon² 1,000 > 550 km Specific energy (Wh kg⁻¹) 800 > 400 km 600 > 225 km Today 400 > 200 km 160 km 200 50 km 80 km 100 km 0 Future Zn-air Li-S Pb-acid Ni-Cd Ni-MH Li-ion Li-air Li-ion Price (US\$ kW h⁻¹) 200 600 900 600 < 150 <150 <150 < 150

Available

Under development

R&D

E. Li-S batteries

- Advantages
- High capacity

2567 Wh/kg@S Vs 420 Wh/kg@Ll

- ✓ Cheap, rich, Environment friendly
- Problems
- Fast capacity fading
- > Poor cyclibility
- Reasons
- Insulating
- Shuttle effect of polysulfides
- Volume change during charge/discharge

Graphene in Li-S Batteries

- ✓ Hybrid Materials
 - Confinement (ACS Nano 2013)
 - Chemical bonding (O&N)

(Nano Energy, 2016; Nature Commun 2017)

- ✓ Integrated Cathode
 - Double layer (Adv Mater 2014) Shuttle Retarding;
 - Single layer (Adv Mater 2015)
 - All-in-one (Nano Energy 2015; Adv

Mater 2016)

- GO + 3D GF (Adv Mater 2016)
- **Goal:** "Double High" Loading & Content

Conductive

Design of a sandwich structure

- Improve adhesion
- Lower internal impendence & polarization;
- Act as a site for the retention of ions;
- > Adsorb and trap polysulfides
- Increase surface area
 - Polysulphides are blocked in cathode and re-used during cycling.

GM Zhou, et al, Adv Mater, 2014, 26, 625

Electrochemical performance

Graphene current collecotr

Polymer separator (up) and graphene-coated polymer separator (bottom)

Design of an all-graphene S cathode

POG: Partially oxygenated graphene HCG: Highly conductive graphene HPG: Highly porous graphene

S content: 80 et% S loading: 5 mg/cm2

RP Fang, et al, ACS Nano, 2016, DOI: 0.1021/acsnano.6b04019

Electrochemical performance

Improvement of areal capacity

Material Reference	S percentage of material /electrode	Sulfur loading or thickness of cathode	Cycle performance, 1C=1.675A/g	Surface capacity/ mAh cm ⁻²
CNT@S1	53% /45%	0.42mg cm ^{-2/} 10~15µm	1C, 1000 cycles, 1053~535mAh g ⁻¹	0.2~0.4
PVP-encapsulated S nanosphere ²	70.4%,/	1mg cm ⁻² /21.3μm	0.5C, 1000 cycles, 990~535mAh g ⁻¹	0.5~1
Sulphur–TiO ₂ yolk– shell nanoarchitecture ³	71%/53%	0.4~0.6mg cm ^{-2/}	0.5C 1000 cycles, 1030~690mAh g ⁻¹	0.4~0.6
S@C NW ⁴	80.85%/	1mg cm ^{-2/}	2C, 1000 cycles, 1138~863mAh g ⁻¹	0.8~1.1
CTAB -S- GO ⁵	80%/56%	0.8 mg cm ^{-2/}	1C 1500 cycles, 740~440 mAh g ⁻¹	0.3~0.6
DTG/S nanocomposites ⁶	64%/-	0.8~1.1 mg cm ^{-2/} -	5C, 200 cycles, 1200~832 mAh g ⁻¹	0.6~1.3
GCC/S+G-separator ⁷	70%/	2∼2.8mg cm ⁻² /20∼30µm	0.9C, 300 cycles, 1052~ 680mAh g ⁻¹	1.4~2.9
S–Pani yolk–shell structure ⁸	58%/46.4%	2mg cm ^{-2/}	2C, 200 cycles, 1100~765 mAh g ⁻¹	1.5~2.2
Mesoporous carbon- sulfur (MCS) ⁹	50%/40%	/	1C 400 cycles, 900~800 mAh g ⁻¹	
PD-coated FLSNS ¹⁰	83%/66%	<1.2mg cm ⁻² / 20µm	0.6C 500 cycles, 715~640 mAh g ⁻¹	<0.8
PD- coated RGO/S ¹¹	74%/56%	<1mg cm ⁻²	0.6C 800 cycles, 715~530 mAh g ⁻¹	<0.72
Amphiphilic surface- modified hollow CNF-S composite ¹²		~1mg cm ⁻²	0.5C 300cycles 828~660 mAh g ⁻¹	0.6~0.8
CFC/S	66%	6.7mg cm⁻²/ ∼150μm	0.3mA/cm ⁻² 50 cycles, 1100 mAh g ⁻¹	>7.0

- "Double Low" Issues
- Low sulfur loading
 - typically <2 mg cm⁻²
- Low sulfur content
 - typically <70 wt%</p>

- Low areal capacity
 - Low energy density

Free Standing Graphene Foam (GF)

- Ultra-low density: ~5 mg/cm³, very light aerogel
- A very high porosity: ~99.7%
- Specific surface area: ~900 m²/g

ZP Chen, et al., Nature Mater 2011, 10, 424

Graphene Foam-rGO 3D Nested Hierarchical Network

- **GF-rGO:** high porosity and specific surface area; 3D networks
- **GF**: highly conductive network
- rGO: anchoring sulfur nanoparticles via functional groups

Areal Capacity Comparison

• Sulfur loading: 14.4 mg cm⁻²; Sulfur content: 89.4 wt%

- High sulfur loading and high sulfur content
- High areal capacity, good rate capability and cycling stability

GJ Hu, et al, Adv. Mater. 28, 1063 (2016).

Graphene —

A Promising Material for Flexible and Smart Energy Storage

Trend of mobile devices & power sources

Foldable Displays

Jeong G, et al, Energy Environ. Sci., 2011, 4, 1986

Power for Flexible Devices

- Integratible with electronic devices
- High capacity per area & mass
- Superior mechanical flexibility

Vital component:
Free-standing flexible electrodes

Light, thin & flexible

Classification of flexible devices

Graphene Foam-based flexible LIBs

e.

N Li, et al, PNAS, 2012, 109, 17360.

Performance of A GF-based Flexible LIB

120

100<

60

20

Cycle number

No binder; No additive!

Performance of A GF-based Flexible LIB

High rate performance. Fully charged in 6 minutes.

Summary

- > Various uses of graphenematerials in Li storage.
 - ≻ LIBs;
 - ≻ Li-S;
 - Flexible devices;
 - > Etc
- Different functions of graphene-based materials in Li storage.
 - Conductive network;
 - Buffer and protection layer;
 - Matrix;
 - Current collector

Challenges and Perspective

- > Challenges of graphene-based materials in Li storage.
 - Customer-tailoring of graphene materials;
 - Control of quality
 - Design of composition, structure and configuration;
 - Improvement of first Coulumbic efficiency;
 - Control of SEI formation;
 - Enhancement of cyclic performance;
 - Lowering of cost;
 - Understanding of the mechanisms;
 - ≻ Etc.
- Great potential of graphene-based materials for Li storage.

Acknowledgment

- Prof. LI Feng
- Prof. Ren Wencai
- Dr. Lichang Yin
- Dr. Pei Songfeng
- Dr. Wen Lei
- Dr. Liang Ji
- Ms. Shi Ying

- Dr. Yu Wanjing
- Dr. Wu Zhong-Shuai
- Dr. Zhou Guangmin
- Dr. Li Na
- Dr. Chen Zongping
- Mr. Hu guangjian
- Miss Ruopian Fang
- Mr. Wang Yuzuo
- Dr. Wang Dawei @ UNSW, AU
- Prof. Yang Quan-Hong @ Tianjin Univ, China

Acknowledgement

•

energy storage materials

Editor-in-Chief: Hui-Ming Cheng

Publisher: Elsevier

Website:

http://www.journals.elsevier. com/energy-storagematerials/

High-quality papers are welcome!

Submission NOW: http://www.evise.com/evise/f aces/pages/navigation/NavC ontroller.jspx?JRNL_ACR=E NSM/

Thank you very much for your attention!