

Synthesis and Lithium Battery Applications of Few-layer Black Phosphorous (BP) Nanosheets

Long Chen

Supervisor: Prof. Wencai Ren

29 March 2017

Shenyang National Laboratory for Materials Science

The Institute of Metal Research, Chinese Academy of Sciences Ichen12s@imr.ac.cn

Outline

SYN

Advantages of BP

SYNL

Layer-dependent direct bandgap

Bulk to monolayer: 0.3 – 1.0 eV

Semiconductor-metal transition

Deformation-induced

S. Das et al., Nano Lett. 2014, 14, 10, 5733.

Advantages of BP

SYNL

L. K. Li et al., Nat. Nanotechnol. 2014, 9, 5, 372.

Potential Applications of BP

Organic photovoltaics

S. M. Cui et al., Nat. Commun. 2015, 6. H. Wang et al., J. Am. Chem. Soc. 2015, 137, 35, 11376. S. H. Lin et al., Adv. Funct. Mater. 2016, 26, 6, 864.

H. T. Yuan et al., Nat. Nanotechnol. 2015, 10, 8, 707.

W. Hang et al,. Nano Lett. 2014, 14, 6424.

X. Zhang et al., Angew. Chem. Int. Ed. 2015, 54, 1.

Disadvantages of BP

J. O. Island et al., 2D Mater. 2015, 2, 011002.

SYNL

X. L. Liu et al., J. Phys. Chem. L 2015, 6, 5, 773.

Stability of BP

Prevent oxidization X $(X = NO_2, OCH_3)$ III AIO_x/BP $\Delta E = -1.56 \text{ eV}$ BP Surface coating Surface modification **Utilize oxidization** d а O₂ plasma etching Al2O3 To post-synaptic a **BP** (Receptor) neuron Monolayer phosphorene Drain Source PO b ALD Al₂O₂ coating O₂ plasma etching SiO₂ Si mm From pre-synaptic neuron For single-layer BP Neuromorphic synaptic device J. D. Wood et al., Nano Lett. 2014, 14, 12, 6964. C. R. Ryder et al., Nat. Chem. 2016, 8, 597. J. J. Pei et al., Nat. Commun. 2016, 7, 10450. H. Tian et al., Adv. Mater. 2016, 28, 25, 4991. SYNL

Synthesis of Few-layer BP Film

Thin BP film on PET

Problems:

Very thick

~ 40 nm

Not uniform

rough surface

Low quality

polycrystalline

No effective way to obtain large-area, high-quality monolayer BP film !

X. S. Li et al., 2D Mater. 2015, 2, 031002.

Another Way Out

Thick flakes, at 50 mA g⁻¹

Large powders, at 24 mA g⁻¹

- Low conductivity
- Severe volume expansion
- Small work current density
- Fast capacity decay

Materials	Specific capacity (mAh g⁻¹)	Conductivity (S m ⁻¹)	
Graphene	372	~10 ⁸	
BP	2596	~10 ²	
Si	4200	~10-4	

M. Nagao et al., J. Power Sources 2011, 196, 6902.

Comparison of Present Methods

Methods	High Temp. high Press.	Bi/Hg catalyst	HEMM	Sono- chemistry	Gas-phase
					lansionnalion
Raw materials	white P	white P Hg/Bi	red P	red P	red P, Snl ₄ , AuSn
Conditions	p >10000 atm	normal pressure	ambient Ar	sonication	vacuum
Size	mm-scale	5x0.1x0.07 mm ²	nm-scale	tens of um	cm-scale
Time	tens of min	tens of hours	tens of hours	several hours	several hours
Quality	high	low	low	high	very high

Toxic chemicals

Complex apparatuses

Small size

SYNL

Time-consuming

Y. Maruyama et al., *Physica B+C* **1981**, 105, 1, 9.

P. W. Bridgman, J. Am. Chem. Soc. 1914, 36, 7, 1344.

S. H. Aldave et al., 2D Mater. 2016, 3, 014007.

T. Nilges et al., J. Solid State Chem. 2008, 181, 1707.

Characterization of Bulk BP

SYNL

Exfoliation of Few-layer BP Nanosheets

SYNL

J. R. Brent et al., *Chem. Commun.* **2014**, *50*, 13338. P. Yasaei et al., *Adv. Mater.* **2015**, *27*, 1887.

D. Hanlon et al., Nat. Commun. 2015, 6, 8563.

Quality of Few-layer BP Nanosheets

Structure of Few-layer BP Nanosheets

High-quality, clean surface

BP-G Hybrid Paper Electrode

G : BP = 20 : 80 wt%

High flexibility

BP nanosheets wrapped by G flakes, effectively confining the expansion of BP nanosheets during charge/discharge cycles.

Electrochemical Behaviors

Better rate capability

SYNL

 402 mAh g^{-1} after 500 cycles

BP Nanoparticle-G Hybrid Electrode

Top-view

Cross-section

G : BP = 20 : 80 wt%

Broken when peeling off Agglomeration of BP nanoparticles leads to weak interaction with G flakes, impossible for performance test

Application for Lithium-sulfur Battery

- Higher energy density
- Abundant resources
 - Low conductivity
 - Polysulfide "shuttle effect"

Performance related

M. Wild et al., *Energy Environ. Sci.*, **2015**, 8, 3477.

- Growth of Li dendrites
- Volume expansion

Safety related

Z. W. Seh et al., Chem. Soc. Rev., 2016, 45, 5605.

Density Functional Theory Calculation

FLP nanosheets act as polysulfide immobilizer,

reducing loss of capacity and keeping integrity of structure

FLP-CNF Electrode

SYNL

CNF: carbon nanofiber FLP: few-layer phosphorene

FLP : CNF ~15 : 85 wt% highly flexible

FLP nanosheets uniformly distributed in CNF matrix

L. Li, L. Chen et al. Adv. Mater. 2016, DOI: 10.1002/adma.201602734.

Morphology of Electrodes

Cathode

Anode

Cathode with FLP fasten polysulfide

Anode in battery with FLP nanosheets keep intact

Cyclic Voltammetry (CV)

SYNL

FLP nanosheets act as catalyst, accelerating reaction Higher reduction peak and lower oxidation peak potentials

Galvanostatic Charge/discharge Tests

Promoted specific capacity

Better rate capability

After 500 cycles, 660 mAh g^{-1} remains, coulumbic efficiency ~98%

Conclusions

High-quality few-Layer BP nanosheets have been prepared by exfoliation in water

Using of graphene in BP-G hybrid paper promoted the conductivity of electrode and confined expansion of BP

Adding small amount of BP into CNF electrode greatly improves overall performance due to the catalyst effect and its role as polysulfide immobilizer

Acknowledgment

- Prof. Wencai Ren
- Prof. Hui-Ming Cheng
- Dr. Guangmin Zhou
- Mr. Zhibo Liu

Shenyang National Laboratory for Materials Science

The Institute of Metal Research, Chinese Academy of Sciences

- Prof. Nikhil Koratkar
- Ms. Lu Li

Mechanical, Aerospace, and Nuclear Engineering

Rensselaer Polytechnic Institute

Thank you for your attention !

CALIFORNIA STATES