Air stable n-type black phosphorus transistor with photoactive doping layer

Yih-Ren Chang

7th edition of Graphene Conference, Mar. 30, 2017
Brief introduction to 2D materials

Graphene

✓ Atomic-thick monolayer of carbon atoms in honeycomb shape

- Unique band structure
- Extraordinary electrical and optical properties
 - Zero effective mass near the Dirac point
 - High carrier mobility
 - Sensitive and tunable fermi level
 - High transparency

Science, 2008, 320, 1308–1308
Restriction against graphene

Absence of a bandgap!

- Graphene transistors are difficult to turn “off”
- Low on/off ratio (usually < 10)

- On/off current ratio is usually far below what is needed for applications in logic circuits

Nature Nanotechnology 9, 768–779 (2014)
2D materials beyond graphene

- **Transition metal dichalcogenide (TMD)**
 - Exfoliated by scotch tape method
 - Layered structure
 - MoS$_2$, MoSe$_2$, WS$_2$...
 - 1~2eV direct bandgap
 - **Much higher on/off ratio**
 - **Inferior mobility ~1-10 cm2/V∙s**

![Graphene structure](image1)

Science 306.5696 (2004).

Nature Nanotechnology 6, 147–150 (2011)

Nano Lett., 2010, 10 (4), 1271–1275

Nano Lett. 2013, 13, 1852–1857
2D materials beyond graphene

Black phosphorous (phosphorene)

- The most stable phosphorus (P) allotrope, also known as phosphorene or BP
- The second known two-dimensional material formed by only single element
 - Chair configuration
- Thickness-dependent **direct bandgap**
 - Bandgap changes from about 2.0eV (monolayer) to 0.35eV (bulk)

Thickness dependent band structure

Scientific Reports 4, 6677, (2014)
Characteristics of black phosphorous devices

- Black phosphorus usually shows intrinsic p-type semiconducting characteristic with high average carrier mobility range from 100 to $300 \text{cm}^2/\text{V} \cdot \text{s}$ at room temperature (highest value of $1000 \text{cm}^2/\text{V} \cdot \text{s}$ has been reported).

- On/off ratio of 10^5 can be achieved.

- Ambipolar transport properties was also reported.

- Weaker n-type transport properties than p-type effective n-type doping technique is needed.

ACS Nano, 2014, 8 (4), pp 4033–40413

Nature Nanotechnology 9, 330–331 (2014) DOI: 10.1038/nnano.2014.85
Instability in ambient atmosphere

- Few-layer black phosphorus is extremely unstable in ambient atmosphere
 - Degradation occurs at the surface and would even damage the electronic performance

![Images and graphs from nanolett 2014 and 2D Mater. 2015]

◆ A big challenge for device fabrication and practical applications
Motivation

- **Stable and n-type black phosphorus transistor**
 - Critical for further applications of black phosphorus electronic devices, like CMOS or p-n diodes

- TiOx might be a suitable candidate to achieve our target
 - Solution processable => convenient application
 - Promising passivation layer in organic electronic and graphene-based transistor
- Provide high air stability

ACS Nano, 2012, 6 (7), pp 6215–6221
Characteristics of TiO\textsubscript{x} as N-type dopant

- In recent graphene-related research, TiO\textsubscript{x} exhibits *n-type doping* property

![Graphene and TiO\textsubscript{x} diagram](image)

- TiO\textsubscript{x} is also a *Photoactive material* with *light-sensitized n-type doping* property

ACS Nano, 2012, 6 (7), pp 6215–6221

Stability testing

- **Pristine black phosphorus in ambient atmosphere**
 - The *degradation* could easily be observed under optical microscopy

![Pristine BP](Image)

- **With TiO$_x$ capped on black phosphorus, it seems BP could be protected well**

![TiOx/BP](Image)
Roughness measurement

- Use atomic force microscopy to measure the roughness variation with time

◆ Pristine black phosphorus

◆ TiO\textsubscript{x}-capped black phosphorus

- Under ambient atmosphere, pristine BP surface roughness decay with time, but the surface roughness of TiO\textsubscript{x} coated BP keeps flat
Extended lifetime of BP FET

- It also extends the lifetime of the device in ambient condition

Pristine black phosphorus FET

TiO\textsubscript{x}-capped black phosphorus FET

- Both of the mobility and on/off ratio would decay under exposure to air, but they could maintain well with the protect of thin film TiOx
Measurement of TiOx passivated BP FET

• As we expected, the electron mobility has slightly enhanced
 - TiOx also serve as good **n-type dopant** in black phosphorus system
 -> Reduce the effective Schottky barrier height
 - Fewer defect sites (electron traps) due to TiOx passivation
The originally p-type transport characteristic has been suppressed.

\textbf{TiO}_x acts as hole blocking layer in this system.
TiOx as hole blocking layer

- Id-Vd measurement of TiOx / BP FET and BP FET

- From the IV curve of hole branch, we found TiOx would block hole carriers
 - Hole transport behavior turns into a non-ohmic manner
 - This phenomenon didn’t happen in electron branch
 - Charge transport layer
Photo active n-type doping in TiOx/BP system

- **Trap-assisted photo-induced doping**
- **Photo-excited holes** trapped by defects in TiOx
 - => electrons accumulated
 - => excess electron transfer along band alignment
 - => *photo-induced n-type doping*
 - => *precisely controllable*

Summary

- With the self-encapsulated photoactive doping layers, TiOx, stable and high performance n-type black phosphorus transistor has been fabricated.
Acknowledgement

Nano Materials and Devices Lab, Department of Materials Science and Engineering, National Taiwan University

Wang’s group,
Institute of Atomic and Molecular Sciences, Academia Sinica

Prof. Wei-Hua Wang
Dr. Fu-Yu Shih
Dr. Cheng-Hua Liu
Dr. Po-Hsiang Wang
Mr. Yueh-Chun Wu
Mr. Che-An Tsai
Mr. Yu-Ting Huang
Mr. Chia-Kuei Li

Wang’s group,
Institute of Atomic and Molecular Sciences, Academia Sinica

Prof. Chiu-Wei Chen
Dr. Shao-Sian Li
Dr. Pai-Chia Kuo
Dr. Yun Chieh Yeh
Dr. Po-Hsun Ho
Mr. Ying-Chiao Wang
Mr. Hsin-An Chen
Mr. Hua-Chun Liou
Ms. Yi-Ting Liou
Mr. Shih-Wei Lin
Mr. Hsiang-Chun Chen

Prof. Chun-Wei Chen
Dr. Shao-Sian Li
Dr. Pai-Chia Kuo
Dr. Yun Chieh Yeh
Dr. Po-Hsun Ho
Mr. Ying-Chiao Wang
Mr. Hsin-An Chen
Mr. Hua-Chun Liou
Ms. Yi-Ting Liou
Mr. Shih-Wei Lin
Mr. Hsiang-Chun Chen

Mr. Min-Ken Li
Mr. Wei-Chen Lee
Ms. Yu-Pei Yang
Mr. Chien-Hsun Chuang
Mr. Yi-Siang Shih
Mr. Chi-Huang Chang
Mr. Chun-Ji Chen
Mr. Cheng Han Wu
Mr. Chung-Wei Lin

Center for Condensed Matter Sciences,
National Taiwan University

Dr. Raman Sankar

中華民國科學部

Ministry of Science and Technology, R.O.C.

Thanks for your attention